Observations of Meteoric Aerosol in the Upper Stratosphere–Lower Mesosphere by the Method of Two-Wavelength Lidar Sensing


We present the results of two-wavelength lidar sensing of the middle atmosphere in the altitude range from 30 to 60 km over Obninsk (55.1° N, 36.6° E) in 2012–2017. Monthly average values of the ratio of aerosol and Rayleigh backscattering coefficients (RARC) at a wavelength of 532 nm, averaged over the layers of 40–50 km and 50–60 km, vary from 0 to 0.02, while the average peak RARC levels in these layers vary from 0.1 to 0.2. Short-term (shorter than 1 month) and long-term (half-year and longer) variations in backscattering are observed. Short-term variations are time concurrent with the occurrence of meteor showers. Long-term enhancements of backscattering in the layer of 50–60 km were observed in 2013 after the Chelyabinsk meteorite fall, as well as in the first half of 2016. In 2014–2015, the monthly average RARC was zero within measurement errors at altitudes from 40 to 60 km. We analyzed the possibility for meteoric aerosol to manifest in backscattering, taking into account the fluxes of meteoric material, gravitational sedimentation of aerosol, and the effect of vertical wind. The flux of visible meteors with masses larger than 10−6 kg and bolides is shown to be insufficient for a long-term enhancement of backscattering in the layer of 50–60 km. It is hypothesized that the enhancement in backscattering is most likely to be due to the occurrence of an enlarged fraction of meteoric smoke particles, formed by ablation of radio meteors and penetrating into the upper stratosphere in the region of the stratospheric polar vortex. In early 2016, this was favored by the formation of an extremely strong stratospheric polar vortex and its shift toward Eurasia.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.


  1. 1

    A. E. Mikirov and V. A. Smerkalov, The study of scattered radiation of the upper atmosphere of the Earth (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  2. 2

    J. M. C. Plane, “Cosmic dust in the Earth’s atmosphere,” Chem. Soc. Rev. 41, 6507–6518 (2012).

    ADS  Article  Google Scholar 

  3. 3

    C. G. Bardeen, O. B. Toon, E. J. Jensen, D. R. Marsh, and V. L. Harvey, “Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere,” J. Geophys. Res. 113, D17202 (2008).

    ADS  Article  Google Scholar 

  4. 4

    M. E. Hervig, L. L. Gordley, L. E. Deaver, D. E. Siskind, M. H. Stevens, J. M. Russell, III, S. M. Bailey, L.  Megner, and C. G. Bardeen, “First satellite observations of meteoric smoke in the middle atmosphere,” Geophys. Res. Lett. 36, L18805 (2009).

    ADS  Article  Google Scholar 

  5. 5

    M. E. Hervig, J. S. A. Brooke, W. Feng, C. G. Bardeen, and J. M. C. Plane, “Constraints on meteoric smoke composition and meteoric influx using SOFIE observations with models,” J. Geophys. Res.: Atmos. 122 (13), 495–505 (2017).

    Google Scholar 

  6. 6

    V. V. Bychkov and V. N. Marichev, “Formation of water aerosols in the upper stratosphere in periods of anomalous winter absorption of radio waves in the ionosphere,” Atmos. Ocean. Opt. 21 (3), 219–226 (2008).

    Google Scholar 

  7. 7

    V. V. Bychkov, B. M. Shevtsov, and V. N. Marichev, “Same statistically average characteristics of occurrence of aerosol scattering in the middle atmosphere of Kamchatka,” Atmos. Ocean. Opt. 26 (2), 104–106 (2013).

    Article  Google Scholar 

  8. 8

    V. A. Korshunov, D. S. Zubachev, E. O. Merzlyakov, and Ch. Jacobi, “Aerosol parameters of middle atmosphere measured by two-wavelength lidar sensing and their comparison with radio meteor echo measurements,” Atmos. Ocean. Opt. 28 (1), 82–88 (2015).

    Article  Google Scholar 

  9. 9

    A. A. Cheremisin, L. V. Granitskii, V. M. Myasnikov, and N. V. Vetchinkin, “Remote optical sensing in the ultraviolet region of the aerosol layer near the stratopause from onboard the astrophysical space station “Astron”,” Atmos. Ocean. Opt. 11 (10), 952–957 (1998).

    Google Scholar 

  10. 10

    P. Keckhut, A. Hauchecorne, and M. L. Chanin, “A critical review of the data base acquired for the long term surveillance of the middle atmosphere by French Rayleigh lidars,” J. Atmos. Ocean. Technol. 10 (6), 850–867 (1993).

    ADS  Article  Google Scholar 

  11. 11

    A. R. Klekociuk, P. G. Brown, D. W. Pack, D. O. ReVelle, W. N. Edwards, R. E. Spalding, E. Tagliaferri, B. B. Yoo, and J. Zagari, “Meteoritic dust from the atmospheric disintegration of a large meteoroid,” Nature 436 (7054), 1132–1135 (2005).

    ADS  Article  Google Scholar 

  12. 12

    V. N. Ivanov, D. S. Zubachev, V. A. Korshunov, V. B. Lapshin, M. S. Ivanov, K. A. Galkin, P. A. Gubko, D. L. Antonov, G. F. Tulinov, A. A. Cheremisin, P. V. Novikov, S. V. Nikolashkin, S. V. Titov, and V. N. Marichev, “Lidar observations of stratospheric aerosol traces of Chelyabinsk meteorite,” Opt. Atmos. Okeana 27 (2), 117–122 (2014).

    Google Scholar 

  13. 13

    A. A. Cheremisin, P. V. Novikov, I. S. Shnipov, V. V. Bychkov, and B. M. Shevtsov, “Lidar observations and formation mechanism of the structure of stratospheric and mesospheric aerosol layers over Kamchatka,” Geomag. Aeron. (Engl. transl.) 52 (5), 653–663 (2012).

  14. 14

    V. I. Gryazin and S. A. Beresnev, “Influence of vertical wind on stratospheric aerosol transport,” Meteorol. Atmos. Phys. 110, 151–162 (2011).

    ADS  Article  Google Scholar 

  15. 15

    V. Della Corte, J. Franciscus, M. Rietmeijer, Alessandra A. Rotundi, M. Ferrari, and P. Palumbo, “Meteoric CaO and carbon smoke particles collected in the upper stratosphere from an unanticipated source,” Tellus B: Chem. Phys. Meteorol. 65 (1), 20174 (2013).

    Article  Google Scholar 

  16. 16

    G. N. Glazov, Statistical Questions of Lidar Sounding of the Atmosphere (Nauka, Novosibirsk, 1987) [in Russian].

    Google Scholar 

  17. 17

    A. Behrendt and T. Nakamura, “Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature,” Opt. Express 10 (16), 805–817 (2002).

    ADS  Article  Google Scholar 

  18. 18

    M. Adam, “Notes on temperature-dependent lidar equations,” J. Atmos. Ocean. Technol. 26 (6), 1021–1039 (2009).

    ADS  Article  Google Scholar 

  19. 19

    F. J. M. Rietmeijer, “Interrelationships among meteoric metals, meteors, interplanetary dust, micrometeorites, and meteorites,” Meteorit. Planet. Sci. 35 (5), 1025–1041 (2000).

    ADS  Article  Google Scholar 

  20. 20

    P. Spurny, J. Borovicka, H. Mucke, and J. Svoren, “Discovery of a new branch of the Taurid meteoroid stream as a real source of potentially hazardous bodies,” Astron. Astrophys. 605, A68 (2017).

    ADS  Article  Google Scholar 

  21. 21

    International Meteor Organization. Visual Meteor Database. https://www.imo.net/members/imo_vmdb/ (Cited March 5, 2018).

  22. 22

    R. R. Neely, III, J. M. English, O. B. Toon, S. Solomon, M. Mills, and J. P. Thayer, “Implications of extinction due to meteoritic smoke in the upper stratosphere,” Geophys. Res. Lett. 38, L24808 (2011). https://doi.org/10.1029/2011GL049865

    ADS  Article  Google Scholar 

  23. 23

    Z. Ceplecha, J. Borovicka, W. Elford, D. Revelle, R. Hawkes, V. Porubcan, and M. Simek, “Meteor phenomena and bodies,” Space Sci. Rev. 84 (3/4), 327–471 (1998).

    ADS  Article  Google Scholar 

  24. 24

    J. D. Carrillo-Sanchez, J. M. C. Plane, W. Feng, D. Nesvorny, and D. Janches, “On the size and velocity distribution of cosmic dust particles entering the atmosphere,” Geophys. Res. Lett. 42 (15), 6518–6525 (2015). https://doi.org/10.1002/2015GL065149

    ADS  Article  Google Scholar 

  25. 25

    O. Kalashnikova, M. Horanyi, G. E. Thomas, and O. B. Toon, “Meteoric smoke production in the atmosphere,” Geophys. Res. Lett. 27 (20), 3293–3296 (2000).

    ADS  Article  Google Scholar 

  26. 26

    P. Brown, R. E. Spalding, D. ReVelle, O. E. Tagliaferri, and S. P. Worden, “The flux of small near-Earth objects colliding with the Earth,” Nature 420, 314–316 (2002).

    ADS  Google Scholar 

  27. 27

    V. A. Filippov, Candidate’s Dissertation in Mathematics and Physics (Joint-Stock Company “National Center of Space Research and Technology”, Almaty, 2010).

  28. 28

    V. I. Gryazin and S. A. Beresnev, “About vertical motion of fractal-like particles in the atmosphere,” Opt. Atmos. Okeana 24 (6), 506–509 (2011).

    Google Scholar 

  29. 29

    R. W. Saunders, S. Dhomse, W. S. Tian, M. P. Chipperfield, and J. M. C. Plane, “Interactions of meteoric smoke particles with sulphuric acid in the Earth’ stratosphere,” Atmos. Chem. Phys. 12, 4387–4398 (2012).

    ADS  Article  Google Scholar 

  30. 30

    Jet propulsion laboratory. Fireball and Bolide Data. https://www.cneos.jpl.nasa.gov/fireballs/ (Cited April 10, 2018).

  31. 31

    V. Matthias, A. Dornbrack, and G. Stober, “The extraordinary strong and cold polar vortex in the early northern winter 2015/2016,” Geophys. Res Lett. 43 (23), 12.287–12.294 (2016).

  32. 32

    F. M. Palmeiro, M. Iza, D. Barriopedro, N. Calvo, and R. Garcia-Herrera, “The complex behavior of El Nino winter 2015–2016,” Geophys. Res Lett. 44 (6), 2902–2910 (2017).

    ADS  Article  Google Scholar 

  33. 33

    M. P. Nikiforova, A. M. Zvyagintsev, P. N. Vargin, N. S. Ivanova, A. N. Lukyanov, and I. N. Kuznetsova, “Anomalously low total ozone levels over the Northern Urals and Siberia in late January 2016,” Atmos. Ocean. Opt. 30 (3), 255–262 (2017).

    Article  Google Scholar 

  34. 34

    E. P. Kropotkina, S. V. Solomonov, S. B. Rozanov, A. N. Ignat’ev, and A. N. Lukin, “Variations in the Ozone concentration in the stratosphere over Moscow due to dynamic processes in the cold period of 2015–2016,” Bull. Lebedev Phys. Inst. 45 (1), 19–23 (2018).

    ADS  Article  Google Scholar 

  35. 35

    J. Curtius, R. Weigel, H.-J. Vossing, H. Wernli, A. Werner, C.-M. Volk, P. Konopka, M. Krebsbach, C. Schiller, A. Roiger, H. Schlager, V. Dreiling, and S. Borrmann, “Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements,” Atmos. Chem. Phys. 5 (11), 3053–3069 (2005).

    ADS  Article  Google Scholar 

  36. 36

    L. Megner, D. E. Siskind, M. Rapp, and J. Gumbel, “Global and temporal distribution of meteoric smoke: A two dimensional simulation study,” J. Geophys. Res. 113, D03202 (2008). https://doi.org/10.1029/2007JD009054

    ADS  Article  Google Scholar 

Download references


The authors would like to thank T. N. Sykilinde for assistance in the analysis of meteor shower data, as well as the European Centre for Medium-Range Weather Forecasts for providing access to reanalyze data from the ERA-5 project. The paper contains the modified Copernicus Climate Change Service data for 2014–2016.

Author information



Corresponding authors

Correspondence to V. A. Korshunov or E. G. Merzlyakov or A. A. Yudakov.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Korshunov, V.A., Merzlyakov, E.G. & Yudakov, A.A. Observations of Meteoric Aerosol in the Upper Stratosphere–Lower Mesosphere by the Method of Two-Wavelength Lidar Sensing. Atmos Ocean Opt 32, 45–54 (2019). https://doi.org/10.1134/S1024856019010081

Download citation


  • lidar
  • backscattering
  • middle atmosphere
  • meteoric aerosol
  • meteoric smoke