Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 1, pp 45–54 | Cite as

Observations of Meteoric Aerosol in the Upper Stratosphere–Lower Mesosphere by the Method of Two-Wavelength Lidar Sensing

  • V. A. KorshunovEmail author
  • E. G. MerzlyakovEmail author
  • A. A. YudakovEmail author
REMOTE SENSING OF ATMOSPHERE, HYDROSPHERE, AND UNDERLYING SURFACE
  • 19 Downloads

Abstract

We present the results of two-wavelength lidar sensing of the middle atmosphere in the altitude range from 30 to 60 km over Obninsk (55.1° N, 36.6° E) in 2012–2017. Monthly average values of the ratio of aerosol and Rayleigh backscattering coefficients (RARC) at a wavelength of 532 nm, averaged over the layers of 40–50 km and 50–60 km, vary from 0 to 0.02, while the average peak RARC levels in these layers vary from 0.1 to 0.2. Short-term (shorter than 1 month) and long-term (half-year and longer) variations in backscattering are observed. Short-term variations are time concurrent with the occurrence of meteor showers. Long-term enhancements of backscattering in the layer of 50–60 km were observed in 2013 after the Chelyabinsk meteorite fall, as well as in the first half of 2016. In 2014–2015, the monthly average RARC was zero within measurement errors at altitudes from 40 to 60 km. We analyzed the possibility for meteoric aerosol to manifest in backscattering, taking into account the fluxes of meteoric material, gravitational sedimentation of aerosol, and the effect of vertical wind. The flux of visible meteors with masses larger than 10−6 kg and bolides is shown to be insufficient for a long-term enhancement of backscattering in the layer of 50–60 km. It is hypothesized that the enhancement in backscattering is most likely to be due to the occurrence of an enlarged fraction of meteoric smoke particles, formed by ablation of radio meteors and penetrating into the upper stratosphere in the region of the stratospheric polar vortex. In early 2016, this was favored by the formation of an extremely strong stratospheric polar vortex and its shift toward Eurasia.

Keywords:

lidar backscattering middle atmosphere meteoric aerosol meteoric smoke 

Notes

ACKNOWLEDGMENTS

The authors would like to thank T. N. Sykilinde for assistance in the analysis of meteor shower data, as well as the European Centre for Medium-Range Weather Forecasts for providing access to reanalyze data from the ERA-5 project. The paper contains the modified Copernicus Climate Change Service data for 2014–2016.

REFERENCES

  1. 1.
    A. E. Mikirov and V. A. Smerkalov, The study of scattered radiation of the upper atmosphere of the Earth (Gidrometeoizdat, Leningrad, 1981) [in Russian].Google Scholar
  2. 2.
    J. M. C. Plane, “Cosmic dust in the Earth’s atmosphere,” Chem. Soc. Rev. 41, 6507–6518 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    C. G. Bardeen, O. B. Toon, E. J. Jensen, D. R. Marsh, and V. L. Harvey, “Numerical simulations of the three-dimensional distribution of meteoric dust in the mesosphere and upper stratosphere,” J. Geophys. Res. 113, D17202 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    M. E. Hervig, L. L. Gordley, L. E. Deaver, D. E. Siskind, M. H. Stevens, J. M. Russell, III, S. M. Bailey, L.  Megner, and C. G. Bardeen, “First satellite observations of meteoric smoke in the middle atmosphere,” Geophys. Res. Lett. 36, L18805 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    M. E. Hervig, J. S. A. Brooke, W. Feng, C. G. Bardeen, and J. M. C. Plane, “Constraints on meteoric smoke composition and meteoric influx using SOFIE observations with models,” J. Geophys. Res.: Atmos. 122 (13), 495–505 (2017).Google Scholar
  6. 6.
    V. V. Bychkov and V. N. Marichev, “Formation of water aerosols in the upper stratosphere in periods of anomalous winter absorption of radio waves in the ionosphere,” Atmos. Ocean. Opt. 21 (3), 219–226 (2008).Google Scholar
  7. 7.
    V. V. Bychkov, B. M. Shevtsov, and V. N. Marichev, “Same statistically average characteristics of occurrence of aerosol scattering in the middle atmosphere of Kamchatka,” Atmos. Ocean. Opt. 26 (2), 104–106 (2013).CrossRefGoogle Scholar
  8. 8.
    V. A. Korshunov, D. S. Zubachev, E. O. Merzlyakov, and Ch. Jacobi, “Aerosol parameters of middle atmosphere measured by two-wavelength lidar sensing and their comparison with radio meteor echo measurements,” Atmos. Ocean. Opt. 28 (1), 82–88 (2015).CrossRefGoogle Scholar
  9. 9.
    A. A. Cheremisin, L. V. Granitskii, V. M. Myasnikov, and N. V. Vetchinkin, “Remote optical sensing in the ultraviolet region of the aerosol layer near the stratopause from onboard the astrophysical space station “Astron”,” Atmos. Ocean. Opt. 11 (10), 952–957 (1998).Google Scholar
  10. 10.
    P. Keckhut, A. Hauchecorne, and M. L. Chanin, “A critical review of the data base acquired for the long term surveillance of the middle atmosphere by French Rayleigh lidars,” J. Atmos. Ocean. Technol. 10 (6), 850–867 (1993).ADSCrossRefGoogle Scholar
  11. 11.
    A. R. Klekociuk, P. G. Brown, D. W. Pack, D. O. ReVelle, W. N. Edwards, R. E. Spalding, E. Tagliaferri, B. B. Yoo, and J. Zagari, “Meteoritic dust from the atmospheric disintegration of a large meteoroid,” Nature 436 (7054), 1132–1135 (2005).ADSCrossRefGoogle Scholar
  12. 12.
    V. N. Ivanov, D. S. Zubachev, V. A. Korshunov, V. B. Lapshin, M. S. Ivanov, K. A. Galkin, P. A. Gubko, D. L. Antonov, G. F. Tulinov, A. A. Cheremisin, P. V. Novikov, S. V. Nikolashkin, S. V. Titov, and V. N. Marichev, “Lidar observations of stratospheric aerosol traces of Chelyabinsk meteorite,” Opt. Atmos. Okeana 27 (2), 117–122 (2014).Google Scholar
  13. 13.
    A. A. Cheremisin, P. V. Novikov, I. S. Shnipov, V. V. Bychkov, and B. M. Shevtsov, “Lidar observations and formation mechanism of the structure of stratospheric and mesospheric aerosol layers over Kamchatka,” Geomag. Aeron. (Engl. transl.) 52 (5), 653–663 (2012).Google Scholar
  14. 14.
    V. I. Gryazin and S. A. Beresnev, “Influence of vertical wind on stratospheric aerosol transport,” Meteorol. Atmos. Phys. 110, 151–162 (2011).ADSCrossRefGoogle Scholar
  15. 15.
    V. Della Corte, J. Franciscus, M. Rietmeijer, Alessandra A. Rotundi, M. Ferrari, and P. Palumbo, “Meteoric CaO and carbon smoke particles collected in the upper stratosphere from an unanticipated source,” Tellus B: Chem. Phys. Meteorol. 65 (1), 20174 (2013).CrossRefGoogle Scholar
  16. 16.
    G. N. Glazov, Statistical Questions of Lidar Sounding of the Atmosphere (Nauka, Novosibirsk, 1987) [in Russian].Google Scholar
  17. 17.
    A. Behrendt and T. Nakamura, “Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature,” Opt. Express 10 (16), 805–817 (2002).ADSCrossRefGoogle Scholar
  18. 18.
    M. Adam, “Notes on temperature-dependent lidar equations,” J. Atmos. Ocean. Technol. 26 (6), 1021–1039 (2009).ADSCrossRefGoogle Scholar
  19. 19.
    F. J. M. Rietmeijer, “Interrelationships among meteoric metals, meteors, interplanetary dust, micrometeorites, and meteorites,” Meteorit. Planet. Sci. 35 (5), 1025–1041 (2000).ADSCrossRefGoogle Scholar
  20. 20.
    P. Spurny, J. Borovicka, H. Mucke, and J. Svoren, “Discovery of a new branch of the Taurid meteoroid stream as a real source of potentially hazardous bodies,” Astron. Astrophys. 605, A68 (2017).ADSCrossRefGoogle Scholar
  21. 21.
    International Meteor Organization. Visual Meteor Database. https://www.imo.net/members/imo_vmdb/ (Cited March 5, 2018).Google Scholar
  22. 22.
    R. R. Neely, III, J. M. English, O. B. Toon, S. Solomon, M. Mills, and J. P. Thayer, “Implications of extinction due to meteoritic smoke in the upper stratosphere,” Geophys. Res. Lett. 38, L24808 (2011).  https://doi.org/10.1029/2011GL049865 ADSCrossRefGoogle Scholar
  23. 23.
    Z. Ceplecha, J. Borovicka, W. Elford, D. Revelle, R. Hawkes, V. Porubcan, and M. Simek, “Meteor phenomena and bodies,” Space Sci. Rev. 84 (3/4), 327–471 (1998).ADSCrossRefGoogle Scholar
  24. 24.
    J. D. Carrillo-Sanchez, J. M. C. Plane, W. Feng, D. Nesvorny, and D. Janches, “On the size and velocity distribution of cosmic dust particles entering the atmosphere,” Geophys. Res. Lett. 42 (15), 6518–6525 (2015).  https://doi.org/10.1002/2015GL065149 ADSCrossRefGoogle Scholar
  25. 25.
    O. Kalashnikova, M. Horanyi, G. E. Thomas, and O. B. Toon, “Meteoric smoke production in the atmosphere,” Geophys. Res. Lett. 27 (20), 3293–3296 (2000).ADSCrossRefGoogle Scholar
  26. 26.
    P. Brown, R. E. Spalding, D. ReVelle, O. E. Tagliaferri, and S. P. Worden, “The flux of small near-Earth objects colliding with the Earth,” Nature 420, 314–316 (2002).ADSGoogle Scholar
  27. 27.
    V. A. Filippov, Candidate’s Dissertation in Mathematics and Physics (Joint-Stock Company “National Center of Space Research and Technology”, Almaty, 2010).Google Scholar
  28. 28.
    V. I. Gryazin and S. A. Beresnev, “About vertical motion of fractal-like particles in the atmosphere,” Opt. Atmos. Okeana 24 (6), 506–509 (2011).Google Scholar
  29. 29.
    R. W. Saunders, S. Dhomse, W. S. Tian, M. P. Chipperfield, and J. M. C. Plane, “Interactions of meteoric smoke particles with sulphuric acid in the Earth’ stratosphere,” Atmos. Chem. Phys. 12, 4387–4398 (2012).ADSCrossRefGoogle Scholar
  30. 30.
    Jet propulsion laboratory. Fireball and Bolide Data. https://www.cneos.jpl.nasa.gov/fireballs/ (Cited April 10, 2018).Google Scholar
  31. 31.
    V. Matthias, A. Dornbrack, and G. Stober, “The extraordinary strong and cold polar vortex in the early northern winter 2015/2016,” Geophys. Res Lett. 43 (23), 12.287–12.294 (2016).Google Scholar
  32. 32.
    F. M. Palmeiro, M. Iza, D. Barriopedro, N. Calvo, and R. Garcia-Herrera, “The complex behavior of El Nino winter 2015–2016,” Geophys. Res Lett. 44 (6), 2902–2910 (2017).ADSCrossRefGoogle Scholar
  33. 33.
    M. P. Nikiforova, A. M. Zvyagintsev, P. N. Vargin, N. S. Ivanova, A. N. Lukyanov, and I. N. Kuznetsova, “Anomalously low total ozone levels over the Northern Urals and Siberia in late January 2016,” Atmos. Ocean. Opt. 30 (3), 255–262 (2017).CrossRefGoogle Scholar
  34. 34.
    E. P. Kropotkina, S. V. Solomonov, S. B. Rozanov, A. N. Ignat’ev, and A. N. Lukin, “Variations in the Ozone concentration in the stratosphere over Moscow due to dynamic processes in the cold period of 2015–2016,” Bull. Lebedev Phys. Inst. 45 (1), 19–23 (2018).ADSCrossRefGoogle Scholar
  35. 35.
    J. Curtius, R. Weigel, H.-J. Vossing, H. Wernli, A. Werner, C.-M. Volk, P. Konopka, M. Krebsbach, C. Schiller, A. Roiger, H. Schlager, V. Dreiling, and S. Borrmann, “Observations of meteoric material and implications for aerosol nucleation in the winter Arctic lower stratosphere derived from in situ particle measurements,” Atmos. Chem. Phys. 5 (11), 3053–3069 (2005).ADSCrossRefGoogle Scholar
  36. 36.
    L. Megner, D. E. Siskind, M. Rapp, and J. Gumbel, “Global and temporal distribution of meteoric smoke: A two dimensional simulation study,” J. Geophys. Res. 113, D03202 (2008).  https://doi.org/10.1029/2007JD009054 ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Taifun Scientific Production AssociationObninskRussia

Personalised recommendations