Skip to main content

Comparative Analysis of Key Parameters of Photonic Nanojets from Axisymmetric Nonspherical Microparticles

Abstract

The effect of photonic nanojets (PNJ) in the scattering near field nearby the surface of dielectric axisymmetric microparticles (hemisphere, axicon, and combined particles) under optical illumination is theoretically considered. Key PNJ parameters (length, width, and peak intensity) are calculated using the discrete-dipole approximation; the dependence of these parameters on the geometric shape of microparticles is analyzed. We show that the use of a special type of combined transparent particle, which consists of an axicon and two attached hemispheres, can produce ultralocalized light fluxes with a peak intensity which considerably exceeds the corresponding values for simple particles (hemisphere and axicon).

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am., B 32, 1570–1574 (2015).

    ADS  Article  Google Scholar 

  2. V. V. Kotlyar and S. S. Stafeev, “Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon,” J. Opt. Soc. Am., B 27, 1991–1997 (2010).

    ADS  Article  Google Scholar 

  3. I. V. Minin, O. V. Minin, and Yu. E. Geints, “Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: Brief review,” Ann. Phys. (Berlin) 527, 491–497 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  4. I. V. Minin, O. V. Minin, V. Pacheco-Pena, and M. Beruete, “Localized photonic jets from flat, three-dimensional dielectric cuboids in the reflection mode,” Opt. Lett. 40, 2329–2332 (2015).

    ADS  Article  Google Scholar 

  5. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13 (22), 526–533 (2005).

    ADS  Article  Google Scholar 

  6. Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photon nanojets of dielectric microspheres,” Opt. Commun. 283, 4775–4781 (2010).

    ADS  Article  Google Scholar 

  7. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotecnology 18, 485302 (2008).

    Article  Google Scholar 

  8. W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “Fabrication of large area periodic nanostructures using nanosphere photolithography,” Nanoscale Res. Lett. 3, 351–354 (2008).

    ADS  Article  Google Scholar 

  9. D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotecnology 23, 485305 (2012).

    Article  Google Scholar 

  10. K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (Berlin) 527, 513–522 (2015).

    ADS  MathSciNet  Article  Google Scholar 

  11. N. Bityurin, A. Afanasiev, V. Bredikhin, A. Alexandrov, N. Agareva, A. Pikulin, I. Ilyakov, B. Shishkin, abd R. Akhmedzhanov, “Colloidal particle lens arrays-assisted nanopatterning by harmonics of a femtosecond laser,” Opt. Express 21, 21485–21490 (2013).

    ADS  Article  Google Scholar 

  12. A. Abdurrochman, S. Lecler, F. Mermet, B. Y. Tumbelaka, B. Serio, and J. Fontaine, “Photonic jet breakthrough for direct laser microetching using nanosecond near-infrared laser,” Appl. Opt. 53, 7202–7207 (2014).

    ADS  Article  Google Scholar 

  13. P. Ghenuche, J. De Torres, P. Ferrand, and J. Wenger, “Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays,” Appl. Phys. Lett. 105 (13), 131102 (2014).

    ADS  Article  Google Scholar 

  14. V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom (2010). https://doi.org/10.1117/2.1201002.002578

  15. X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16 (18), 13560–13568 (2008).

    ADS  Article  Google Scholar 

  16. W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotecnology 18 (48), 485302 (2007).

    Article  Google Scholar 

  17. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: Theory and tests,” J. Opt. Soc. Am., A 25, 2693–2703 (2008).

    ADS  Article  Google Scholar 

  18. Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “'Photonic jets' from dielectric microaxicons,” Qunatum Electron. 45 (8), 743–747 (2015).

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu. E. Geints, E. K. Panina or A. A. Zemlyanov.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Geints, Y.E., Panina, E.K. & Zemlyanov, A.A. Comparative Analysis of Key Parameters of Photonic Nanojets from Axisymmetric Nonspherical Microparticles. Atmos Ocean Opt 32, 41–44 (2019). https://doi.org/10.1134/S102485601901007X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102485601901007X

Keywords:

  • photonic nanojet
  • hemisphere
  • combined particles