Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am., B 32, 1570–1574 (2015).
ADS
Article
Google Scholar
V. V. Kotlyar and S. S. Stafeev, “Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon,” J. Opt. Soc. Am., B 27, 1991–1997 (2010).
ADS
Article
Google Scholar
I. V. Minin, O. V. Minin, and Yu. E. Geints, “Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: Brief review,” Ann. Phys. (Berlin) 527, 491–497 (2015).
ADS
MathSciNet
Article
Google Scholar
I. V. Minin, O. V. Minin, V. Pacheco-Pena, and M. Beruete, “Localized photonic jets from flat, three-dimensional dielectric cuboids in the reflection mode,” Opt. Lett. 40, 2329–2332 (2015).
ADS
Article
Google Scholar
X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13 (22), 526–533 (2005).
ADS
Article
Google Scholar
Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photon nanojets of dielectric microspheres,” Opt. Commun. 283, 4775–4781 (2010).
ADS
Article
Google Scholar
W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotecnology 18, 485302 (2008).
Article
Google Scholar
W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “Fabrication of large area periodic nanostructures using nanosphere photolithography,” Nanoscale Res. Lett. 3, 351–354 (2008).
ADS
Article
Google Scholar
D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotecnology 23, 485305 (2012).
Article
Google Scholar
K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (Berlin) 527, 513–522 (2015).
ADS
MathSciNet
Article
Google Scholar
N. Bityurin, A. Afanasiev, V. Bredikhin, A. Alexandrov, N. Agareva, A. Pikulin, I. Ilyakov, B. Shishkin, abd R. Akhmedzhanov, “Colloidal particle lens arrays-assisted nanopatterning by harmonics of a femtosecond laser,” Opt. Express 21, 21485–21490 (2013).
ADS
Article
Google Scholar
A. Abdurrochman, S. Lecler, F. Mermet, B. Y. Tumbelaka, B. Serio, and J. Fontaine, “Photonic jet breakthrough for direct laser microetching using nanosecond near-infrared laser,” Appl. Opt. 53, 7202–7207 (2014).
ADS
Article
Google Scholar
P. Ghenuche, J. De Torres, P. Ferrand, and J. Wenger, “Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays,” Appl. Phys. Lett. 105 (13), 131102 (2014).
ADS
Article
Google Scholar
V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom (2010). https://doi.org/10.1117/2.1201002.002578
X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16 (18), 13560–13568 (2008).
ADS
Article
Google Scholar
W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotecnology 18 (48), 485302 (2007).
Article
Google Scholar
B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: Theory and tests,” J. Opt. Soc. Am., A 25, 2693–2703 (2008).
ADS
Article
Google Scholar
Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “'Photonic jets' from dielectric microaxicons,” Qunatum Electron. 45 (8), 743–747 (2015).
ADS
Article
Google Scholar