Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 1, pp 41–44 | Cite as

Comparative Analysis of Key Parameters of Photonic Nanojets from Axisymmetric Nonspherical Microparticles

  • Yu. E. GeintsEmail author
  • E. K. PaninaEmail author
  • A. A. ZemlyanovEmail author
OPTICS OF CLUSTERS, AEROSOLS, AND HYDROSOLES
  • 17 Downloads

Abstract

The effect of photonic nanojets (PNJ) in the scattering near field nearby the surface of dielectric axisymmetric microparticles (hemisphere, axicon, and combined particles) under optical illumination is theoretically considered. Key PNJ parameters (length, width, and peak intensity) are calculated using the discrete-dipole approximation; the dependence of these parameters on the geometric shape of microparticles is analyzed. We show that the use of a special type of combined transparent particle, which consists of an axicon and two attached hemispheres, can produce ultralocalized light fluxes with a peak intensity which considerably exceeds the corresponding values for simple particles (hemisphere and axicon).

Keywords:

photonic nanojet hemisphere combined particles 

Notes

REFERENCES

  1. 1.
    Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Microaxicon-generated photonic nanojets,” J. Opt. Soc. Am., B 32, 1570–1574 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    V. V. Kotlyar and S. S. Stafeev, “Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon,” J. Opt. Soc. Am., B 27, 1991–1997 (2010).ADSCrossRefGoogle Scholar
  3. 3.
    I. V. Minin, O. V. Minin, and Yu. E. Geints, “Localized EM and photonic jets from non-spherical and non-symmetrical dielectric mesoscale objects: Brief review,” Ann. Phys. (Berlin) 527, 491–497 (2015).ADSMathSciNetCrossRefGoogle Scholar
  4. 4.
    I. V. Minin, O. V. Minin, V. Pacheco-Pena, and M. Beruete, “Localized photonic jets from flat, three-dimensional dielectric cuboids in the reflection mode,” Opt. Lett. 40, 2329–2332 (2015).ADSCrossRefGoogle Scholar
  5. 5.
    X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13 (22), 526–533 (2005).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photon nanojets of dielectric microspheres,” Opt. Commun. 283, 4775–4781 (2010).ADSCrossRefGoogle Scholar
  7. 7.
    W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotecnology 18, 485302 (2008).CrossRefGoogle Scholar
  8. 8.
    W. Wu, D. Dey, O. G. Memis, A. Katsnelson, and H. Mohseni, “Fabrication of large area periodic nanostructures using nanosphere photolithography,” Nanoscale Res. Lett. 3, 351–354 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    D. Grojo, L. Boarino, N. De Leo, R. Rocci, G. Panzarasa, P. Delaporte, M. Laus, and K. Sparnacci, “Size scaling of mesoporous silica membranes produced by nanosphere mediated laser ablation,” Nanotecnology 23, 485305 (2012).CrossRefGoogle Scholar
  10. 10.
    K. W. Allen, N. Farahi, Y. Li, N. I. Limberopoulos, D. E. Walker, A. M. Urbas, V. Liberman, and V. N. Astratov, “Super-resolution microscopy by movable thin-films with embedded microspheres: Resolution analysis,” Ann. Phys. (Berlin) 527, 513–522 (2015).ADSMathSciNetCrossRefGoogle Scholar
  11. 11.
    N. Bityurin, A. Afanasiev, V. Bredikhin, A. Alexandrov, N. Agareva, A. Pikulin, I. Ilyakov, B. Shishkin, abd R. Akhmedzhanov, “Colloidal particle lens arrays-assisted nanopatterning by harmonics of a femtosecond laser,” Opt. Express 21, 21485–21490 (2013).ADSCrossRefGoogle Scholar
  12. 12.
    A. Abdurrochman, S. Lecler, F. Mermet, B. Y. Tumbelaka, B. Serio, and J. Fontaine, “Photonic jet breakthrough for direct laser microetching using nanosecond near-infrared laser,” Appl. Opt. 53, 7202–7207 (2014).ADSCrossRefGoogle Scholar
  13. 13.
    P. Ghenuche, J. De Torres, P. Ferrand, and J. Wenger, “Multi-focus parallel detection of fluorescent molecules at picomolar concentration with photonic nanojets arrays,” Appl. Phys. Lett. 105 (13), 131102 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom (2010).  https://doi.org/10.1117/2.1201002.002578
  15. 15.
    X. Cui, D. Erni, and C. Hafner, “Optical forces on metallic nanoparticles induced by a photonic nanojet,” Opt. Express 16 (18), 13560–13568 (2008).ADSCrossRefGoogle Scholar
  16. 16.
    W. Wu, A. Katsnelson, O. G. Memis, and H. Mohseni, “A deep sub-wavelength process for the formation of highly uniform arrays of nanoholes and nanopillars,” Nanotecnology 18 (48), 485302 (2007).CrossRefGoogle Scholar
  17. 17.
    B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: Theory and tests,” J. Opt. Soc. Am., A 25, 2693–2703 (2008).ADSCrossRefGoogle Scholar
  18. 18.
    Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “'Photonic jets' from dielectric microaxicons,” Qunatum Electron. 45 (8), 743–747 (2015).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations