Atmospheric and Oceanic Optics

, Volume 32, Issue 1, pp 85–93 | Cite as

Weekly Cycle of Pollutant Concentrations in Near-Surface Air over Moscow

  • N. F. ElanskyEmail author
  • A. V. ShilkinEmail author
  • E. G. Semutnikova
  • P. V. Zaharova
  • V. S. Rakitin
  • N. A. Ponomarev
  • Y. M. Verevkin


Time variations in the concentrations of gas pollutants CO, NO, NO2, SO2, and PM10 aerosol in the surface atmospheric layer over Moscow show a weekly cycle, manifested as a decrease in the pollution level on weekends. The character of the weekly variations and amplitude of the weekly cycle were determined using, for the first time, a 10-year archive of observations of atmospheric composition from 46 State Nature Conservation Organization (SNCO) Mosecomonitoring stations. The amplitudes of weekly oscillations in the daytime CO concentration, averaged over the territory of the city and seasons, vary from 21.8% in spring to 29.2% in winter, and those of daytime NO concentration vary from 16.9% in summer to 38.1% in winter. The weekly cycle of daytime NO2 concentration is stable throughout the year, and its amplitude is 33% on average. Amplitudes of weekly variations in SO2 and PM10 (22.7% and 35.2%, respectively) are maximal in autumn according to daytime data; the CH4 weekly cycle is insignificant. In nighttime concentrations of these pollutants, a significant weekly cycle is extracted only for NO2. The analysis of the data, obtained for separate Moscow districts, shows approximately the same Sunday effect. Only CO concentrations have high amplitudes at the city center (39.2%) and in the southwestern sector (35.1%).


weekly cycle pollutants carbon monoxide methane nitric oxide nitrogen dioxide sulfur dioxide aerosol near-surface concentrations megalopolis 



This work was supported by Russian Science Foundation (grant no. 16-17-10275). In the work, we used observations performed under the support from Russian Foundation for Basic Research (grant no. 16-05-00109).

This work was performed at A.M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences.


  1. 1.
    N. F. Elansky, N. A. Ponomarev, and Y. M. Verevkin, “Air quality and pollutant emissions in the Moscow megacity in 2005–2014,” Atmos. Environ. 175 (2), 54–64 (2018).ADSCrossRefGoogle Scholar
  2. 2.
    T. M. Butler, M. G. Lawrence, B. R. Gurjar, J. van Aardenne, M. Schultz, and J. Leliveld, “The representation of emission from megacities in global emissions inventories,” Atmos. Environ. 42 (4), 703–719 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    N. Elansky, “Air quality and CO emissions in the Moscow megacity,” Urban Clim. 8, 42–56 (2014).CrossRefGoogle Scholar
  4. 4.
    J. G. Murphy, D. A. Day, P. A. Cleary, P. J. Wooldridge, D. B. Millet, A. H. Goldstein, and R. C. Cohen, “The weekend effect within and downwind of Sacramento—Part 1: Observations of ozone, nitrogen oxides, and VOC reactivity,” Atmos. Chem. Phys. 7, 5327–5339 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    S. Stephens, S. Madronich, F. Wu, J. B. Olson, R. Ramos, A. Retama, and R. Munoz, “Weekly patterns of Mexico city’s surface concentrations of CO, NOx, PM10, and O3 during 1986–2007,” Atmos. Chem. Phys. 8, 5313–5325 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    J.-M. Yoo, M.-J. Jeong, D. Kim, W. R. Stockwell, J.‑H. Yang, H.-W. Shin, M.-I. Lee, C.-K. Song, and S.-D. Lee, “Spatiotemporal variations of air pollutants (O3, NO2, SO2, CO, PM10, and VOCs) with land-use types,” Atmos. Chem. Phys. 15, 10857–10885 (2015).ADSCrossRefGoogle Scholar
  7. 7.
    I. I. Mokhov, “Specific features of the 2010 summer heat formation in the European territory of Russia in the context of general climate changes and climate anomalies,” Izv., Atmos. Ocean. Phys. 47 (6), 653–660 (2011).CrossRefGoogle Scholar
  8. 8.
    N. F. Elanskii, I. I. Mokhov, I. B. Belikov, E. V. Berezina, A. S. Elokhov, V. A. Ivanov, N. V. Pankratova, O. V. Postylyakov, A. N. Safronov, A. I. Skorokhod, and R. A. Shumskii, “Gaseous admixtures in the atmosphere over Moscow during the 2010 summer,” Izv., Atmos. Ocean. Phys. 47 (6), 672–681 (2011).CrossRefGoogle Scholar
  9. 9.
    I. N. Kuznetsova, “The effect of meteorology on air pollution in Moscow during the summer episodes of 2010,” Izv., Atmos. Ocean. Phys. 48 (5), 504–515 (2012).CrossRefGoogle Scholar
  10. 10.
    N. V. Pankratova, N. F. Elanskii, I. B. Belikov, O. V. Lavrova, A. I. Skorokhod, and R. A. Shumskii, “Ozone and nitric oxides in the surface air over northern Eurasia according to observational data obtained in TROICA experiments,” Izv., Atmos. Ocean. Phys. 47 (3), 313–328 (2011).CrossRefGoogle Scholar
  11. 11.
    N. F. Elanskii, M. A. Lokoshchenko, A. V. Trifanova, I. B. Belikov, and A. I. Skorokhod, “On contents of trace gases in the atmospheric surface layer over Moscow,” Izv., Atmos. Ocean. Phys. 51 (1), 30–41 (2015).CrossRefGoogle Scholar
  12. 12.
    G. I. Gorchakov, E. G. Semutnikova, A. A. Isakov, V. M. Kopeikin, A. V. Karpov, G. A. Kurbatov, E. A. Lezina, T. Ya. Ponomareva, and A. V. Sokolov, “Moscow smoky haze of 2010. Extreme aerosol and gaseous air pollution in Moscow region,” Opt. Atmos. Okeana 24 (6), 452–458 (2011).CrossRefGoogle Scholar
  13. 13.
    G. I. Gorchakov, E. G. Semoutnikova, E. S. Baikova, and A. V. Karpov, “The weekly cycle of diurnal variation of the carbon monoxide concentration in the surface and boundary layers of the urban atmosphere,” Dokl. Earth Scie. 455 (2), 425–429 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    S. A. Sitnov and T. G. Adiks, “Weekly variability of surface CO concentrations in Moscow,” Izv., Atmos. Ocean. Phys. 50 (2), 160–170 (2014).CrossRefGoogle Scholar
  15. 15.
    A. M. Alferova, V. G. Blinov, M. L. Gitarskii, V. A. Grabar, D. G. Zamolodchikov, A. V. Zinchenko, V. M. Ivanova, V. M. Ivakhov, R. T. Karaban’, D. V. Karelin, I. L. Kalyuzhnyi, F. V. Kashin, D. E. Konyushkov, V. N. Korotkov, V. A. Krovotyntsev, S. A. Lavrov, A. S. Marunich, N. N. Paramonova, A. A. Romanovskaya, A. A. Trunov, A. V. Shilkin, and A. K. Yuzbekov, Monitoring of Fluxes of Greenhouse Gases in Natural Ecosystems (Amirit, Saratov, 2017) [in Russian].Google Scholar
  16. 16.
    A. N. Gruzdev, “Weekly cycle in the atmosphere,” Dokl. Akad. Nauk 439 (3), 407–412 (2011).Google Scholar
  17. 17.
    N. F. Elanskii, I. B. Belikov, G. S. Golitsyn, A. M. Grisenko, O. V. Lavrova, N. V. Pankratova, A. N. Safronov, A. I. Skorokhod, and R. A. Shumskii, “Observations of the atmosphere composition in the Moscow megapolis from a mobile laboratory,” Dokl. Earth Sci. 432 (1), 649–655 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    C. L. Blanchard and S. J. Tanenbaum, “Differences between weekday and weekend air pollutant levels in Southern California,” J. Air Waste Manage. Assoc. 53, 816–828 (2003).CrossRefGoogle Scholar
  19. 19.
    S. Beirle, U. Platt, M. Wenig, and T. Wagner, “Weekly cycle of NO2 by GOME measurements: A signature of anthropogenic sources,” Atmos. Chem. Phys. 3, 2225–2232 (2003).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • N. F. Elansky
    • 1
    Email author
  • A. V. Shilkin
    • 2
    Email author
  • E. G. Semutnikova
    • 3
  • P. V. Zaharova
    • 4
  • V. S. Rakitin
    • 1
  • N. A. Ponomarev
    • 1
  • Y. M. Verevkin
    • 1
  1. 1.Obukhov Institute of Atmospheric Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Taifun Scientific Production AssociationObninskRussia
  3. 3.Moscow Department for Environmental Management and ProtectionMoscowRussia
  4. 4.Mosecomonitoring State Nature Conservation OrganizationMoscowRussia

Personalised recommendations