Skip to main content

Contribution of the Water Vapor Continuum Absorption to the Radiation Balance of the Atmosphere with Cirrus Clouds

Abstract

The upward and downward fluxes of solar and thermal radiation are simulated for the meteorological conditions typical for midlatitude summer. The atmospheric radiation balance due to cirrus clouds of different depth is estimated. The sensitivity of the radiative forcing to different models of the water vapor continuum absorption is estimated.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. 1

    G. L. Stephens and T. L’Ecuyer, “The Earth’s energy balance,” Atmos. Res. 166, 195–203 (2015).

    Article  Google Scholar 

  2. 2

    G. L. Stephens, M. Wild, P. W. Stackhouse, T. L. Ecuyer, S. Kato, and D. S. Henderson, “The global character of the flux of downward longwave radiation,” J. Clim. 25, 2329–2340 (2012).

    ADS  Article  Google Scholar 

  3. 3

    D. D. Turner, A. Merrelli, D. Vimont, and E. J. Mlawer, “Impact of modifying the longwave water vapor continuum absorption model on community Earth system model simulations,” J. Geophys. Res. 117, D04106 (2012).

    ADS  Article  Google Scholar 

  4. 4

    I. V. Ptashnik, “Water vapour continuum absorption: Short prehistory and current status,” Opt. Atmos. Okeana 28 (5), 443–459(2015).

    Google Scholar 

  5. 5

    K. M. Firsov, T. Yu. Chesnokova, E. V. Bobrov, and I. I. Klitochenko, “Estimation of uncertainties in the longwave radiative fluxes simulation due to spectroscopic errors,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 929205 (2014).

  6. 6

    T. Yu. Chesnokova, I. I. Klitochenko, K. M. Firsov, “Contribution of water vapor continuum absorption to longwave radiative fluxes in the cloudy and cloudless atmosphere,” Opt. Atmos. Okeana 29 (10), 843–849 (2016).

    Google Scholar 

  7. 7

    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. P. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D16305 (2011).

    ADS  Article  Google Scholar 

  8. 8

    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements,” Phil. Trans. R. Soc., A 370, 2557–2577 (2012).

  9. 9

    Yu. I. Baranov, W. J. Lafferty, Q. Ma, and R. H. Tipping, “Water-vapor continuum absorption in the 800–1250 cm−1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 109 (12-13), 2291–2302 (2008).

    ADS  Article  Google Scholar 

  10. 10

    Yu. I. Baranov and W. J. Lafferty, “The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows,” Phil. Trans. R. Soc., A 370, 2578–2589 (2012).

  11. 11

    http://rtweb.aer.com/continuum_frame.htm (Cited March 9, 2018).

  12. 12

    E. J. Mlawer, V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, and D. C. Tobin, “Development and recent evaluation of the MT_CKD model of continuum absorption,” Phil. Trans. R. Soc., A 370, 2520–2556 (2012).

  13. 13

    D. Paynter and V. Ramaswamy, “Variations in water vapor continuum radiative transfer with atmospheric conditions,” J. Geophys. Res. 117, D16310 (2012).

    ADS  Article  Google Scholar 

  14. 14

    K. M. Firsov, T. Yu. Chesnokova, A. A. Razmolov, and A. V. Chentsov, “Contribution of the water vapor continuum absorption to shortwave solar fluxes in the Earth’s atmosphere with cirrus cloudiness,” Atmos. Ocean. Opt. 31 (1), 1–8 (2018).

    Article  Google Scholar 

  15. 15

    K. M. Firsov, T. Yu. Chesnokova, and E. V. Bobrov, “The role of the water vapor continuum absorption in near ground long-wave radiation processes of the lower Volga Region,” Atmos. Ocean. Opt. 28 (1), 1–8 (2015).

    Article  Google Scholar 

  16. 16

    T. Yu. Chesnokova, K. M. Firsov, and Yu. V. Voronina, “Application of exponential series in the modeling of broadband solar radiative fluxes in the Earth’s atmosphere,” Atmos. Ocean. Opt. 20 (9), 730–735 (2007).

    Google Scholar 

  17. 17

    S. D. Tvorogov, T. B. Zhuravleva, O. B. Rodimova, and K. M. Firsov, “Theory of series of exponents and its application for analysis of radiation processes,” in Problems of Global Climatology and Ecodynamics: Anthropogenic Effects on the State of Planet Earth (Springer/Praxis, Chichester, UK, 2008).

    Google Scholar 

  18. 18

    A. Lacis and V. Oinas, “A description of the k-distribution method for modeling non-grey gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres,” J. Geophys. Res. D 96 (5), 9027 (1991).

    ADS  Article  Google Scholar 

  19. 19

    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrink, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN 2012 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    ADS  Article  Google Scholar 

  20. 20

    K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27 (12), 2502 (1988).

    ADS  Article  Google Scholar 

  21. 21

    A. A. Slingo, “GCM parameterization for the shortwave radiative properties of water clouds,” J. Atmos. Sci. 46 (10), 1419–1427 (1989).

    ADS  Article  Google Scholar 

  22. 22

    J. Fontenla, O. R. White, P. A. Fox, E. H. Avrett, and R. L. Kurucz, “Calculation of solar irradiances. I. Synthesis of the solar spectrum,” Astrophys. J. 518, 480–500 (1999).

    ADS  Article  Google Scholar 

  23. 23

    http://kurucz.harvard.edu/sun/irradiance2008/ (Cited March 9, 2018).

  24. 24

    G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” in Environmental Research Paper No. 954 (AFGL, Hanscom, MA, 1986).

  25. 25

    F. X. Kneizys, D. S. Robertson, L. W. Abreu, P. Acharya, G. P. Anderson, L. S. Rothman, J. H. Chetwynd, J. E. A. Selby, E. P. Shetle, W. O. Gallery, A. Berk, S. A. Clough, and L. S. Bernstein, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, Hanscom, MA, 1996).

  26. 26

    K. M. Firsov, T. Yu. Chesnokova, I. I. Klitochenko, and A. A. Razmolov, “Comparison of two water vapor continuum models in simulation of the longwave fluxes taking into account absorption in cirrus clouds,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100350 (2016).

  27. 27

    A. A. Mitsel, I. V. Ptashnik, K. M. Firsov, and A. B. Fomin, “Efficient technique for line-by-line calculating the transmittance of the absorbing atmosphere,” Atmos. Oceanic Opt. 8 (10), 847–850 (1995).

    Google Scholar 

  28. 28

    Q. Fu, “An accurate parameterization of the solar radiative properties of cirrus clouds for climate models,” J. Clim. 9, 2058–2082 (1996).

    ADS  Article  Google Scholar 

  29. 29

    A. S. Kharin, P. I. Luzan, M. V. Shatunova, and L. R. Dmitrieva-Arrago, “Method for calculation of the components of radiation energy of the “Earth–atmosphere” system in the IR and the role of microphysical properties of clouds,” in Tr. Gidromettsentra Rossii (2010), p. 59–77 [in Russian].

    Google Scholar 

  30. 30

    Q. Fu, P. Yang, and W. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Clim. 11, 2223–2237 (1998).

    ADS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was supported by the Programs of Fundamental Scientific Research of State Academies of Sciences (project no. АААА-А17-117021310148-7).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to T. Yu. Chesnokova, K. M. Firsov or A. A. Razmolov.

Additional information

Translated by I. Ptashnik

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chesnokova, T.Y., Firsov, K.M. & Razmolov, A.A. Contribution of the Water Vapor Continuum Absorption to the Radiation Balance of the Atmosphere with Cirrus Clouds. Atmos Ocean Opt 32, 64–71 (2019). https://doi.org/10.1134/S1024856019010056

Download citation

Keywords:

  • atmospheric radiative transfer
  • water vapor continuum
  • cirrus clouds