Atmospheric and Oceanic Optics

, Volume 32, Issue 1, pp 64–71 | Cite as

Contribution of the Water Vapor Continuum Absorption to the Radiation Balance of the Atmosphere with Cirrus Clouds

  • T. Yu. ChesnokovaEmail author
  • K. M. FirsovEmail author
  • A. A. RazmolovEmail author


The upward and downward fluxes of solar and thermal radiation are simulated for the meteorological conditions typical for midlatitude summer. The atmospheric radiation balance due to cirrus clouds of different depth is estimated. The sensitivity of the radiative forcing to different models of the water vapor continuum absorption is estimated.


atmospheric radiative transfer water vapor continuum cirrus clouds 



The work was supported by the Programs of Fundamental Scientific Research of State Academies of Sciences (project no. АААА-А17-117021310148-7).


  1. 1.
    G. L. Stephens and T. L’Ecuyer, “The Earth’s energy balance,” Atmos. Res. 166, 195–203 (2015).CrossRefGoogle Scholar
  2. 2.
    G. L. Stephens, M. Wild, P. W. Stackhouse, T. L. Ecuyer, S. Kato, and D. S. Henderson, “The global character of the flux of downward longwave radiation,” J. Clim. 25, 2329–2340 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    D. D. Turner, A. Merrelli, D. Vimont, and E. J. Mlawer, “Impact of modifying the longwave water vapor continuum absorption model on community Earth system model simulations,” J. Geophys. Res. 117, D04106 (2012).ADSCrossRefGoogle Scholar
  4. 4.
    I. V. Ptashnik, “Water vapour continuum absorption: Short prehistory and current status,” Opt. Atmos. Okeana 28 (5), 443–459(2015).Google Scholar
  5. 5.
    K. M. Firsov, T. Yu. Chesnokova, E. V. Bobrov, and I. I. Klitochenko, “Estimation of uncertainties in the longwave radiative fluxes simulation due to spectroscopic errors,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 929205 (2014).Google Scholar
  6. 6.
    T. Yu. Chesnokova, I. I. Klitochenko, K. M. Firsov, “Contribution of water vapor continuum absorption to longwave radiative fluxes in the cloudy and cloudless atmosphere,” Opt. Atmos. Okeana 29 (10), 843–849 (2016).Google Scholar
  7. 7.
    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. P. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D16305 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapour foreign continuum absorption in near-infrared windows from laboratory measurements,” Phil. Trans. R. Soc., A 370, 2557–2577 (2012).Google Scholar
  9. 9.
    Yu. I. Baranov, W. J. Lafferty, Q. Ma, and R. H. Tipping, “Water-vapor continuum absorption in the 800–1250 cm−1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 109 (12-13), 2291–2302 (2008).ADSCrossRefGoogle Scholar
  10. 10.
    Yu. I. Baranov and W. J. Lafferty, “The water vapour self- and water-nitrogen continuum absorption in the 1000 and 2500 cm−1 atmospheric windows,” Phil. Trans. R. Soc., A 370, 2578–2589 (2012).Google Scholar
  11. 11. (Cited March 9, 2018).Google Scholar
  12. 12.
    E. J. Mlawer, V. H. Payne, J.-L. Moncet, J. S. Delamere, M. J. Alvarado, and D. C. Tobin, “Development and recent evaluation of the MT_CKD model of continuum absorption,” Phil. Trans. R. Soc., A 370, 2520–2556 (2012).Google Scholar
  13. 13.
    D. Paynter and V. Ramaswamy, “Variations in water vapor continuum radiative transfer with atmospheric conditions,” J. Geophys. Res. 117, D16310 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    K. M. Firsov, T. Yu. Chesnokova, A. A. Razmolov, and A. V. Chentsov, “Contribution of the water vapor continuum absorption to shortwave solar fluxes in the Earth’s atmosphere with cirrus cloudiness,” Atmos. Ocean. Opt. 31 (1), 1–8 (2018).CrossRefGoogle Scholar
  15. 15.
    K. M. Firsov, T. Yu. Chesnokova, and E. V. Bobrov, “The role of the water vapor continuum absorption in near ground long-wave radiation processes of the lower Volga Region,” Atmos. Ocean. Opt. 28 (1), 1–8 (2015).CrossRefGoogle Scholar
  16. 16.
    T. Yu. Chesnokova, K. M. Firsov, and Yu. V. Voronina, “Application of exponential series in the modeling of broadband solar radiative fluxes in the Earth’s atmosphere,” Atmos. Ocean. Opt. 20 (9), 730–735 (2007).Google Scholar
  17. 17.
    S. D. Tvorogov, T. B. Zhuravleva, O. B. Rodimova, and K. M. Firsov, “Theory of series of exponents and its application for analysis of radiation processes,” in Problems of Global Climatology and Ecodynamics: Anthropogenic Effects on the State of Planet Earth (Springer/Praxis, Chichester, UK, 2008).Google Scholar
  18. 18.
    A. Lacis and V. Oinas, “A description of the k-distribution method for modeling non-grey gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres,” J. Geophys. Res. D 96 (5), 9027 (1991).ADSCrossRefGoogle Scholar
  19. 19.
    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzocchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, E. A. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrink, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN 2012 Molecular Spectroscopic Database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).ADSCrossRefGoogle Scholar
  20. 20.
    K. Stamnes, S.-C. Tsay, W. Wiscombe, and K. Jayaweera, “Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media,” Appl. Opt. 27 (12), 2502 (1988).ADSCrossRefGoogle Scholar
  21. 21.
    A. A. Slingo, “GCM parameterization for the shortwave radiative properties of water clouds,” J. Atmos. Sci. 46 (10), 1419–1427 (1989).ADSCrossRefGoogle Scholar
  22. 22.
    J. Fontenla, O. R. White, P. A. Fox, E. H. Avrett, and R. L. Kurucz, “Calculation of solar irradiances. I. Synthesis of the solar spectrum,” Astrophys. J. 518, 480–500 (1999).ADSCrossRefGoogle Scholar
  23. 23. (Cited March 9, 2018).Google Scholar
  24. 24.
    G. P. Anderson, S. A. Clough, F. X. Kneizys, J. H. Chetwynd, and E. P. Shettle, “AFGL atmospheric constituent profiles (0–120 km),” in Environmental Research Paper No. 954 (AFGL, Hanscom, MA, 1986).Google Scholar
  25. 25.
    F. X. Kneizys, D. S. Robertson, L. W. Abreu, P. Acharya, G. P. Anderson, L. S. Rothman, J. H. Chetwynd, J. E. A. Selby, E. P. Shetle, W. O. Gallery, A. Berk, S. A. Clough, and L. S. Bernstein, The MODTRAN 2/3 Report and LOWTRAN 7 Model (Phillips Laboratory, Geophysics Directorate, Hanscom, MA, 1996).Google Scholar
  26. 26.
    K. M. Firsov, T. Yu. Chesnokova, I. I. Klitochenko, and A. A. Razmolov, “Comparison of two water vapor continuum models in simulation of the longwave fluxes taking into account absorption in cirrus clouds,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 100350 (2016).Google Scholar
  27. 27.
    A. A. Mitsel, I. V. Ptashnik, K. M. Firsov, and A. B. Fomin, “Efficient technique for line-by-line calculating the transmittance of the absorbing atmosphere,” Atmos. Oceanic Opt. 8 (10), 847–850 (1995).Google Scholar
  28. 28.
    Q. Fu, “An accurate parameterization of the solar radiative properties of cirrus clouds for climate models,” J. Clim. 9, 2058–2082 (1996).ADSCrossRefGoogle Scholar
  29. 29.
    A. S. Kharin, P. I. Luzan, M. V. Shatunova, and L. R. Dmitrieva-Arrago, “Method for calculation of the components of radiation energy of the “Earth–atmosphere” system in the IR and the role of microphysical properties of clouds,” in Tr. Gidromettsentra Rossii (2010), p. 59–77 [in Russian].Google Scholar
  30. 30.
    Q. Fu, P. Yang, and W. Sun, “An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models,” J. Clim. 11, 2223–2237 (1998).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.Volgograd State UniversityVolgogradRussia

Personalised recommendations