Advertisement

Atmospheric and Oceanic Optics

, Volume 32, Issue 1, pp 103–107 | Cite as

Experimental Estimation of Frequency-Contrast Characteristics of Active Pulsed Television Systems under Conditions of Enhanced Turbidity of Aerosol Media

  • V. V. BelovEmail author
  • Yu. V. GridnevEmail author
  • V. V. Kapustin
  • V. S. Kozlov
  • A. N. Kudryavtsev
  • M. I. Kuryachii
  • A. K. Movchan
  • R. F. Rakhimov
  • M. V. Panchenko
  • V. P. Shmargunov
OPTICAL INSTRUMENTATION
  • 8 Downloads

Abstract

Results of laboratory experiments on studying the influence of scattering and absorbing media on the quality of object imaging with active pulsed television optoelectronic systems (OESs) are discussed. It is shown that the quality of object images in active pulsed vision systems or their frequency-contrast characteristics can be studied both by direct measurements or indirectly using Fourier transforms of test object images or derivatives of functions determined in experiments. A previously formulated theoretical statement that the image quality for objects screened by turbid media when using active pulsed OESs with backscattered noise signal selection can be higher almost by an order of magnitude than when using an OES operating with laser side illumination and constantly opened receiver has been confirmed experimentally.

Keywords:

active pulsed TV OESs backscattered noise signal laboratory experiments quality of object imaging frequency-contrast characteristics test patterns scattering and absorbing media 

Notes

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and Science of the Russian Federation (project no. 8.9562.2017/8.9) and Russian Foundation for Basic Research (project no. 16-42-700 072).

REFERENCES

  1. 1.
    V. E. Krasik and V. M. Orlov, Laser Vision Location Systems (Bauman Moscow State Technical University, Moscow, 2013) [in Russian].Google Scholar
  2. 2.
    J. F. Andersen, J. Busck, and H. Heiselberg, “Long distance high accuracy 3-D laser radar and person identification,” Proc. SPIE—Int. Soc. Opt. Eng. 5791, 9–16 (2005).Google Scholar
  3. 3.
    O. David, N. S. Kopeika, and B. Weizer, “Range Gated Active Night Vision System for Automobiles,” Appl. Opt. 45 (28), 7248–7254 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    V. V. Belov, “Statistical modeling of imaging process in active night vision systems with gate-light detection,” Appl. Phys. 75 (4-5), 571–576 (2002).CrossRefGoogle Scholar
  5. 5.
    V. G. Volkov, “Approaches to modernization of active pulsed night vision instruments,” Priborostroenie, Elektrotekhnika, Radiotekhnika, Elektronika, No. 4, 60–63 (2011).Google Scholar
  6. 6.
    V. V. Belov, G. G. Matvienko, R. Yu. Pak, D. V. Shiyanov, R. Yu. Kirpichenko, M. I. Kuryachii, I. N. Pustynskii, and Yu. A. Shurygin, “Active TV systems of vision with selection of scattering background,” Datchiki Sistemy, No. 3, 25–30 (2012).Google Scholar
  7. 7.
    V. V. Belov, V. N. Abramochkin, Yu. V. Gridnev, A. N. Kudryavtsev, V. S. Kozlov, R. F. Rakhimov, V. P. Shmargunov, and M. V. Tarasenkov, “Experimental study of the influence of optical characteristics of a medium on the image quality in optoelectronic systems with backscattered noise signal selection,” Atmos. Oceanic Opt. 30 (5), 429–434 (2017).CrossRefGoogle Scholar
  8. 8.
    R. F. Rakhimov, V. S. Kozlov, and V. P. Shmargunov, “On time dynamics of the complex refractive index and particle microstructure according to data of spectronephelometer measurements in mixed-composition smokes,” Atmos. Oceanic Opt. 25 (1), 51–61 (2012).CrossRefGoogle Scholar
  9. 9.
    R. F. Rakhimov, V. S. Kozlov, A. G. Tumakov, and V. P. Shmargunov, “Optical and microphysical properties of the pyrolysis smoke from measurements by the use of the 4-wavelength polarization spectronephelometer,” Opt. Atmos. Okeana 26 (12), 1045–1053 (2013).Google Scholar
  10. 10.
    V. V. Belov, “Method of the Green’s functions and linear-systems approach in the theory of transfer and recording of optical radiation,” Atmos. Oceanic Opt. 5 (8), 531–534 (1992).Google Scholar
  11. 11.
    V. E. Zuev, V. V. Belov, and V. V. Veretennikov, Theory of Systems in Optics of Dispersion Media (Spektr, Tomsk, 1997) [in Russian].Google Scholar
  12. 12.
    N. I. Mishchenko, I. N. Pustynskii, and V. V. Kapustin, “Methods and means for to increase efficiency of active-pulsed television-computing monitoring systems and security of objects,” Dokl. TUSUR 19 (3), 42–46 (2016).CrossRefGoogle Scholar
  13. 13.
    V. V. Kapustin, A. K. Movchan, and M. I. Kuryachiy, “Vision area parameters analysis for active-pulse television-computing systems,” in Intern. Siberian Conf. on Control and Communications (SIBCON-2017), June 29–30, 2017, Astana, Kazakhstan. P. 1–4.Google Scholar
  14. 14.
    T. van Doorn, “Evaluation of an algorithm for the assessment of the MTF using an edge method,” Med. Phys. 27 (9), 2048–2059 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • V. V. Belov
    • 1
    Email author
  • Yu. V. Gridnev
    • 1
    Email author
  • V. V. Kapustin
    • 2
  • V. S. Kozlov
    • 1
  • A. N. Kudryavtsev
    • 1
  • M. I. Kuryachii
    • 2
  • A. K. Movchan
    • 2
  • R. F. Rakhimov
    • 1
  • M. V. Panchenko
    • 1
  • V. P. Shmargunov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.Tomsk State University of Control Systems and Radio ElectronicsTomskRussia

Personalised recommendations