Skip to main content

Lidar Signal Amplification in a Turbulent Atmosphere under Strong Optical Scintillations

Abstract

Experimental data on lidar signal amplification in a turbulent atmosphere and its dependence on the structure parameter of the turbulent fluctuations of the refractive index of air are presented. It is ascertained that the amplification coefficient first increases up to its maximum with the structure parameter of the refractive index and then decreases under the conditions of strong optical turbulence along a sounding path. The maximum of the amplification coefficient attainable at a certain distance depends on the turbulence strength during measurements. The time variations in the backscatter amplification coefficient are in a good agreement with the time variations in the structure parameter of the refractive index determined from independent measurements.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. M. S. Belen’kii and V. L. Mironov, “Laser method of determining the turbulence parameter on the basis of light scattering by atmospheric aerosol,” Radiophys. Quantum Electron. 24 (3), 206–210 (1981).

    ADS  Article  Google Scholar 

  2. M. S. Belen’kii, A. A. Makarov, V. L. Mironov, and V. V. Pokasov, “Lidar measurements of the structure parameter of atmospheric turbulence,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 20 (4), 314–317 (1984).

    Google Scholar 

  3. M. S. Belen’kii, V. V. Boronoev, N. Ts. Gomboev, and V. L. Mironov, Optical Sounding of Atmospheric Turbulence (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  4. A. Zilbermen and N. S. Kopeika, “Lidar measurements of atmospheric turbulence profiles,” Proc. SPIE. 5338, 288–297 (2004).

    ADS  Article  Google Scholar 

  5. A. S. Gurvich, RF Patent No. 2 011 150 933/28, Byull. Izobret., No. 14 (2012).

  6. A. S. Gurvich, “Lidar sounding of turbulence based on the backscatter enhancement effect,” Izv., Atmos. Ocean. Phys. 48 (6), 585–594 (2012).

    Article  Google Scholar 

  7. A. G. Vinogradov, Yu. A. Kravtsov, and V. I. Tatarskii, “The effect of intensification of back scattering by bodies that are situated in a medium having random inhomogeneities,” Radiophys. Quantum Electron. 16 (7), 818–823 (1973).

    ADS  Article  Google Scholar 

  8. A. L. Afanas’ev, A. S. Gurvich, and A. P. Rostov, “Experimental study of the backscattering effect in a turbulent atmosphere,” in Proc. XVIII Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2012), p. C95–C99 [in Russian].

  9. V. A. Banakh, I. A. Razenkov, and I. N. Smalikho, “Aerosol lidar for study of the backscatter amplification in the atmosphere. Part I. Computer simulation,” Opt. Atmos. Okeana 28 (1), 5–11 (2015).

    Google Scholar 

  10. V. A. Banakh and I. A. Razenkov, “Aerosol lidar for study of the backscatter amplification in the atmosphere. Part II. Construction and experiment,” Opt. Atmos. Okeana 28 (2), 113–119 (2015).

    Google Scholar 

  11. V. A. Banakh and I. A. Razenkov, “Lidar measurements of atmospheric backscattering amplification,” Opt. Spectrosc. 120 (2), 326–334 (2016).

    ADS  Article  Google Scholar 

  12. V. A. Banakh and I. A. Razenkov, “Refractive turbulence strength estimation based on the laser echo signal amplification effect,” Opt. Lett. 41 (19), 4429–4432 (2016).

    ADS  Article  Google Scholar 

  13. V. V. Vorob’ev, “On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: I—Equations,” Atmos. Ocean. Opt. 30 (2), 156–161 (2017).

    Article  Google Scholar 

  14. V. V. Vorob’ev, “On the applicability of asymptotic formulas of retrieving “optical” turbulence parameters from pulse lidar sounding data: II—Results of numerical simulation,” Atmos. Ocean. Opt. 30 (2), 162–168 (2017).

    Article  Google Scholar 

  15. I. A. Razenkov, “Turbulent Lidar: I—Design,” Atmos. Ocean. Opt. 31 (3), 273–280 (2018).

    Article  Google Scholar 

  16. A. L. Afanas’ev, V. A. Banakh, D. A. Marakasov, and A. P. Rostov, “In field tests of an optical meter of the structure parameter of the refractive index,” in Proc. XVIII Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2012), p. B118–B121 [in Russian].

  17. V. A. Banakh and L. O. Gerasimova, “Amplification of the mean power of the radiation backscattered by a flat mirror under strong turbulence,” in Proc. XXIX Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2018) [in Russian].

  18. V. A. Banakh, “Enhancement of the laser return mean power at the strong optical scintillation regime in a turbulent atmosphere,” Atmos. Ocean. Opt. 26 (2), 90–95 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to I.A. Razenkov for BSA-lidar measurement results provided.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to V. A. Banakh or A. V. Falits.

Additional information

Translated by O. Ponomareva

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Banakh, V.A., Gerasimova, L.O., Zaloznaya, I.V. et al. Lidar Signal Amplification in a Turbulent Atmosphere under Strong Optical Scintillations. Atmos Ocean Opt 32, 1–7 (2019). https://doi.org/10.1134/S1024856019010032

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856019010032

Keywords:

  • optical turbulence
  • lidar
  • backscatter amplification