Skip to main content

Study of Air Composition in Different Air Masses


Data of multiyear monitoring at the TOR station are used to calculate the average concentrations of gas and aerosol constituents in different air masses in the region of Tomsk. It is shown that CO2 and CH4 are characterized by a decrease in concentrations in going from an Arctic to a tropical air mass. Ozone shows the opposite pattern: the largest concentrations are recorded in the tropical air mass and the smallest concentrations in the Arctic air mass. Such gases as CO and SO2 show distributions more complex in character.

This is a preview of subscription content, access via your institution.

Fig. 1.
Fig. 2.
Fig. 3.


  1. 1

    S. P. Khromov, Foundations of Synoptic Meteorology (Gidrometizdat, Leningrad, 1948) [in Russian].

    Google Scholar 

  2. 2

    V. E. Zuev, B. D. Belan, and G. O. Zadde, The Optical Weather (Nauka, Novosibirsk, 1990) [in Russian].

    Google Scholar 

  3. 3

    B. D. Belan, G. O. Zadde, A. I. Kuskov, and T. M. Rasskazchikova, “Spectral transmittance of the atmosphere of basic synoptic objects,” Atmos. Ocean. Opt. 7 (9), 640–645 (1994).

    Google Scholar 

  4. 4

    B. D. Belan, G. O. Zadde, and A. I. Kuskov, “Long-period variations of the spectral transmittance of the atmosphere,” Atmos. Ocean. Opt. 7 (10), 721–724 (1994).

    Google Scholar 

  5. 5

    R. M. Law, L. P. Steele, P. B. Krummel, and W. Zahorowski, “Synoptic variations in atmospheric CO2 at Cape Grim: A model intercomparison,” Tellus B 62 (5), 810–820 (2010).

    ADS  Article  Google Scholar 

  6. 6

    M. Klavins and V. Rodinov, “Influence of large-scale atmospheric circulation on climate in Latvia,” Boreal Environ. Res. 15 (6), 533–543 (2010).

    Google Scholar 

  7. 7

    J. Zhang, L. Wu, G. Huang, and M. Notaro, “Relationships between large-scale circulation patterns and carbon dioxide exchange by a deciduous forest,” J. Geophys. Res. 116 (D4), 1–13 (2011).

    Article  Google Scholar 

  8. 8

    R. J. Pope, N. H. Savage, M. P. Chipperfield, S. R. Arnold, and T. J. Osborn, “The influence of synoptic weather regimes on UK air quality: Analysis of satellite column NO2,” Atmos. Sci. Lett. 15 (3), 211–217 (2014).

    Article  Google Scholar 

  9. 9

    L. Pace, L. Boccacci, M. Casilli, P. Di Carlo, and S. Fattorini, “Correlations between weather conditions and airborne pollen concentration and diversity in a Mediterranean high-altitude site disclose unexpected temporal patterns,” Aerobiology 34 (1), 75–87 (2018).

    Article  Google Scholar 

  10. 10

    A. M. Zvyagintsev, G. Kakadzhanova, and O. A. Tarasova, “Influence of air mass transport directions on the seasonal variations of concentrations of minor gas atmospheric components in Europe,” Rus. Meteorol. Hydrol., No. 7, 441–448 (2010).

  11. 11

    D. Coumou, J. Lehmann, and J. Beckmann, “The weakening summer circulation in the Northern Hemisphere mid-latitudes,” Science 348 (6232), 324–327 (2015).

    ADS  Article  Google Scholar 

  12. 12

    I. A. Perez, M. L. Sanchez, M. A. Garcia, and N. Pardo, “An experimental relationship between airflow and carbon dioxide concentrations at a rural site,” Sci. Total Environ. 533, 432–438 (2015).

    ADS  Article  Google Scholar 

  13. 13

    J. Fu, B. Wang, Y. Chen, and Q. Ma, “The influence of continental air masses on the aerosols and nutrients deposition over the western North Pacific,” Atmos. Environ. 172, 1–11 (2018).

    ADS  Article  Google Scholar 

  14. 14

    H. Flocas, A. Kelessis, C. Helmis, M. Petrakakis, M. Zoumakis, and K. Pappas, “Synoptic and local scale atmospheric circulation associated with air pollution episodes in an urban Mediterranean area,” Theor. Appl. Climatol. 95 (3-4), 265–277 (2009).

    ADS  Article  Google Scholar 

  15. 15

    S. A. Sitnov, I. I. Mokhov, G. I. Gorchakov, and A. V. Dzhola, “Smoke haze over the European part of Russia in the summer of 2016: A link to wildfires in Siberia and atmospheric circulation anomalies,” Rus. Meteorol. Hydrol., No. 8, S. 518–528 (2017).

  16. 16

    U. Dayan and I. Levy, “Relationship between synoptic-scale atmospheric circulation and ozone concentrations over Israel,” J. Geophys. Res. 107 (D24), 1–12 (2002).

    Article  Google Scholar 

  17. 17

    J. E. Diem, M. A. Hursey, I. R. Morris, A. C. Murray, and R. A. Rodriguez, “Upper-level atmospheric circulation Patterns and ground-level ozone in the Atlanta Metropolitan area,” J. Appl. Meteorol. Climatol. 49 (11), 2185–2196 (2010).

    ADS  Article  Google Scholar 

  18. 18

    Y. Zhang, H. Mao, A. Ding, D. Zhou, and C. Fu, “Impact of synoptic weather patterns on spatio-temporal variation in surface O3 levels in Hong Kong during 1999–2011,” Atmos. Environ. 73, 41–50 (2013).

    ADS  Article  Google Scholar 

  19. 19

    J. de Arellano and N. P. M. Lipzig, “The impact of weather and atmospheric circulation on O3 and PM10 levels at a rural mid-latitude site,” Atmos. Chem. Phys. 9 (8), 2695–2714 (2009).

    ADS  Article  Google Scholar 

  20. 20

    K. G. T. Dharshana, S. Kravtsov, and J. D. W. Kahl, “Relationship between synoptic weather disturbances and particulate matter air pollution over the United States,” J. Geophys. Res. 115 (D24), 1–16 (2010).

    Google Scholar 

  21. 21

    E. Flaounas, V. Kotroni, K. Lagouvardos, S. Kazad-zis, A. Gkikas, and N. Hatzianastassiou, “Cyclone contribution to dust transport over the Mediterranean region,” Atmos. Sci. Lett. 16 (4), 473–478 (2015).

    Article  Google Scholar 

  22. 22

    G. R. MeGregor and D. Bamzelis, “Synoptic typing and its application to the investigation of weather air pollution relationships, Birmingham, United Kingdom,” Theor. Appl. Climatol. 51 (4), 223–236 (1995).

  23. 23

    Z. L. Fleming, P. S. Monks, and A. J. Manning, “Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition,” Atmos. Res. 104-105 (1), 1–39 (2012).

    Article  Google Scholar 

  24. 24

    C. Orbe, M. Holzer, L. M. Polvani, and D. Waugh, “Air-mass origin as a diagnostic of tropospheric transport,” J. Geophys. Res.: Atmos. 118 (3), 1459–1470 (2013).

    ADS  Article  Google Scholar 

  25. 25

    S. Freitag, A. D. Clarke, S. G. Howell, V. N. Kapustin, T. Campos, V. L. Brekhovskikh, and J. Zhou, “Combining airborne gas and aerosol measurements with HYSPLIT: A visualization tool for simultaneous evaluation of air mass history and back trajectory consistency,” Atmos. Meas. Tech. 7 (1), 107–128 (2014).

    Article  Google Scholar 

  26. 26

    P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, F. Nedelek, J. -D. Paris, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Large-scale studies of gaseous and aerosol composition of air over Siberia,” Opt. Atmos. Okeana 27 (3), 232–239 (2014).

    Google Scholar 

  27. 27

    N. F. Elanskii, I. I. Mokhov, I. B. Belikov, E. V. Berezina, A. S. Elokhov, V. A. Ivanov, N. V. Pankratova, O. V. Postylyakov, A. N. Safronov, A. I. Skorokhod, and R. A. Shumskii, “Gaseous admixtures in the atmosphere over Moscow during the 2010 summer,” Izv., Atmos. Ocean. Phys. 47 (6), 672–681 (2011).

    Article  Google Scholar 

  28. 28

    A. M. Zvyagintsev, O. B. Blyum, A. A. Glazkova, S. N. Kotel’nikov, I. N. Kuznetsova, V. A. Lapchenko, E. A. Lezina, E. A. Miller, V. A. Milyaev, A. P. Popikov, E. G. Semutnikova, O. A. Tarasova, and I. Yu. Shalygina, “Air pollution over European Russia and Ukraine under the hot summer conditions of 2010,” Izv., Atmos. Ocean. Phys. 47 (6), 699–707.

  29. 29

    E. V. Fokeeva, A. N. Safronov, V. S. Rakitin, L. N. Yurganov, E. I. Grechko, and R. A. Shumskii, “Investigation of the 2010 July-August fires impact on carbon monoxide atmospheric pollution in Moscow and its outskirts, estimating of emissions,” Izv., Atmos. Ocean. Phys. 47 (6), 682–698 (2011).

    Article  Google Scholar 

  30. 30

    F. V. Kashin, V. N. Aref’ev, N. I. Sizov, R. M. Akimenko, and L. B. Upenek, “Background component of carbon oxide concentrations in the surface air (Obninsk monitoring station),” Izv., Atmos. Ocean. Phys. 52 (3), 247–252 (2016).

    Article  Google Scholar 

  31. 31

    P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Fofonov, A. V. Kozlov, J.-D. Paris, P. Nedelec, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, and G. N. Tolmachev, “Distribution of trace gases and aerosols in the troposphere over Siberia during wildfires of summer 2012,” J. Geophys. Res.: Atmos. 123 (4), 2285–2297 (2018).

    ADS  Google Scholar 

  32. 32

    T. R. Lee, S. F. J. De Wekker, A. E. Andrews, J. Kofler, and J. Williams, “Carbon dioxide variability during cold front passages and fair weather days at a forested mountaintop site,” Atmos. Environ. 46 (1), 405–416 (2012).

    ADS  Article  Google Scholar 

  33. 33

    X. M. Hu, P. M. Klein, M. Xue, A. Shapiro, and A. Nallapareddy, “Enhanced vertical mixing associated with a nocturnal cold front passage and its impact on near-surface temperature and ozone concentration,” J. Geophys. Res.: Atmos. 118 (7), 2714–2728 (2013).

    ADS  Google Scholar 

  34. 34

    G. M. Scott and R. D. Diab, “Forecasting air pollution potential: A synoptic climatological approach,” J. Air Waste Manag. Assoc. 50 (10), 1831–1842 (2000).

    Article  Google Scholar 

  35. 35

    V. G. Arshinova, B. D. Belan, T. M. Rasskazchikova, A. N. Rogov, and G. N. Tolmachev, “Variation of the ozone concentration in the ground atmospheric layer by the passage of atmospheric fronts,” Atmos. Ocean. Opt. 8 (4), 625–631 (1995).

    Google Scholar 

  36. 36

    V. G. Arshinova, B. D. Belan, E. V. Vorontsova, G. O. Zadde, T. M. Rasskazchikova, O. I. Sem’yanova, and T. K. Sklyadneva, “Dynamics of aerosol variations during passage of atmospheric fronts,” Atmos. Ocean. Opt. 10 (7), 507–511 (1997).

    Google Scholar 

  37. 37

    P. N. Antokhin, M. Yu. Arshinov, V. G. Arshinova, B. D. Belan, D. K. Davydov, T. M. Rasskazchikova, A. V. Fofonov, G. Inoue, T. Machida, Ko. Shimoyama, and Sh. Sh. Maksutov, “CO2 concentration variation above the West Siberia area in different seasons during passes of atmospheric fronts,” Opt. Atmos. Okeana 26 (1), 24–31 (2013).

    Article  Google Scholar 

  38. 38

    M. Yu. Arshinov, B. D. Belan, V. V. Zuev, V. E. Zuev, V. K. Kovalevskii, A. V. Ligotskii, V. E. Meleshkin, M. V. Panchenko, E. V. Pokrovskii, A. N. Rogov, D. V. Simonenkov, and G. N. Tolmachev, “TOR-station for monitoring of atmospheric parameters,” Atmos. Ocean. Opt. 7 (8), 580–584 (1994).

    Google Scholar 

  39. 39

    C. Le Quere, R. N. Andrew, P. Friedlingstein, S. Sitch, J. Pongratz, A. C. Manning, J. I. Korsbakken, G. P. Peters, J. G. Canadell, R. B. Jackson, T. A. Boden, P. P. Tans, O. D. Andrews, V. K. Arora, D. C. E. Bakker, L. Barbero, M. Becker, R. A. Betts, L. Bopp, C. Chevallier, L. P. Chini, P. Ciais, C. E. Cosca, J. Cross, K. Currie, T. Gasser, I. Harris, J. Hauck, V. Haverd, R. A. Houghton, C. W. Hunt, G. Hurtt, T. Ilyina, A. K. Jain, E. Kato, M. Kautz, R. F. Keeling, K. K. Goldewijk, A. Kortzinger, P. Landschutzer, N. Lefevre, A. Lenton, S. Lienert, I. Lima, D. Lombardozzi, N. Metzl, F. Millero, P. M. S. Monteiro, D. R. Munro, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, X. A. Padin, A. Peregon, B. Pfeil, D. Pierrot, B.  Poulter, G. Rehder, J. Reimer, C. Rodenbeck, J. Schwinger, R. Seferian, I. Skjelvan, B. D. Stocker, H. Tian, B. Tilbrook, F. N. Tubiello, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, N. Viovy, N. Vuichard, A. P. Walker, A. J. Watson, A. J. Wiltshire, S. Zaehle, and D. Zhu, “Global carbon budget 2017,” Earth Syst. Sci. Data 10 (1), 405–448 (2018).

    ADS  Article  Google Scholar 

  40. 40

    N. Shakhova, I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and O. Gustafsson, “Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf,” Science 327 (5970), 1246–1250 (2010).

    ADS  Article  Google Scholar 

  41. 41

    I. P. Semiletov, N. E. Shakhova, V. I. Sergienko, I. I. Pipko, and O. V. Dudarev, “On carbon transport and fate in the East Siberian Arctic land-shelf-atmosphere system,” Environ. Res. Lett. 7 (1), 13 (2012).

    Article  Google Scholar 

  42. 42

    S. Hartery, R. Commane, J. Lindaas, C. Sweeney, J. Henderson, M. Mountain, N. Steiner, K. McDonald, S. J. Dinardo, C. E. Miller, S. C. Wofsy, and R. Y.‑W. Chang, “Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska,” Atmos. Chem. Phys. 18 (1), 185–202 (2018).

    ADS  Article  Google Scholar 

  43. 43

    O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, P. Nédélec, J.-D. Paris, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Vertical distributions of gaseous and aerosol admixtures in air over the Russian Arctic,” Atmos. Ocean. Opt. 31 (3), 300–310 (2018).

    Article  Google Scholar 

  44. 44

    S. A. Strode and S. Pawson, “Detection of carbon monoxide trends in the presence of interannual variability,” J. Geophys. Res.: Atmos. 118 (21), 12257–12273 (2013).

    ADS  Google Scholar 

  45. 45

    Y. Zhou, H. Mao, K. Demerjian, C. Hogrefe, and J. Liu, “Regional and hemispheric influences on temporal variability in baseline carbon monoxide and ozone over the Northeast US,” Atmos. Environ. 164, 309–324 (2017).

    ADS  Article  Google Scholar 

  46. 46

    Yu. A. Shtabkin, K. B. Moiseenko, A. I. Skorokhod, A.  V. Vasileva, and M. Khaimann, “Sources of and variations in tropospheric CO in Central Siberia: Numerical experiments and observations at the Zotino Tall Tower Observatory,” Izv., Atmos. Ocean. Phys. 52 (1), 45–56 (2016).

    Article  Google Scholar 

  47. 47

    L. El Amraoui, J.-L. Attie, P. Ricaud, W. A. Lahoz, A. Piacentini, V.-H. Peuch, J. X. Warner, R. Abida, J. Barre, and R. Zbinden, “Tropospheric CO vertical profiles deduced from total columns using data assimilation: Methodology and validation,” Atmos. Meas. Tech. 7 (9), 3035–3057 (2014).

    Article  Google Scholar 

  48. 48

    K. Park, L. K. Emmons, Z. Wang, and J. E. Mak, “Joint application of concentration and δ18O to investigate the global atmospheric CO budget,” Atmosphere 6 (5), 547–578 (2015).

    ADS  Article  Google Scholar 

  49. 49

    V. Vestreng, G. Myhre, H. Fagerli, S. Reis, and L. Tarrason, “Twenty-five years of continuous sulphur dioxide emission reduction in Europe,” Atmos. Chem. Phys. 7 (13), 3663–3681 (2007).

    ADS  Article  Google Scholar 

  50. 50

    S. J. Smith, J. van Aardenne, Z. Klimont, R. J. Andres, A. Volke, and S. D. Arias, “Anthropogenic sulfur dioxide emissions: 1850–2005,” Atmos. Chem. Phys. 11 (3), 1101–1116 (2011).

    ADS  Article  Google Scholar 

  51. 51

    S. Henschel, X. Querol, R. Atkinson, M. Pandolfi, A. Zeka, A. Le Tertre, A. Analitis, K. Katsouyanni, O. Chanel, M. Pascal, C. Bouland, D. Haluza, S. Medina, and P. G. Goodman, “Ambient air SO2 patterns in 6 European cities,” Atmos. Environ. 79, 236–247 (2013).

    ADS  Article  Google Scholar 

  52. 52

    B. D. Belan, Tropospheric Ozone (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].

    Google Scholar 

  53. 53

    B. D. Belan, D. E. Savkin, and G. N. Tolmachev, “Air—temperature dependence of the ozone generation rate in the surface air layer, Atmos. Ocean. Opt. 31 (2), 187–196 (2018).

    Article  Google Scholar 

Download references


This work was supported by the Russian Science Foundation (grant no. 17-17-01095).

Author information



Corresponding authors

Correspondence to O. Yu. Antokhina or P. N. Antokhin.

Additional information

Translated by O. Bazhenov

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antokhina, O.Y., Antokhin, P.N., Arshinova, V.G. et al. Study of Air Composition in Different Air Masses. Atmos Ocean Opt 32, 72–79 (2019).

Download citation


  • atmosphere
  • aerosol
  • air mass
  • gas
  • concentration
  • content
  • composition