Atmospheric and Oceanic Optics

, Volume 32, Issue 1, pp 72–79 | Cite as

Study of Air Composition in Different Air Masses

  • O. Yu. AntokhinaEmail author
  • P. N. AntokhinEmail author
  • V. G. Arshinova
  • M. Yu. Arshinov
  • B. D. Belan
  • S. B. Belan
  • D. K. Davydov
  • N. V. Dudorova
  • G. A. Ivlev
  • A. V. Kozlov
  • T. M. Rasskazchikova
  • D. E. Savkin
  • D. V. Simonenkov
  • T. K. Sklyadneva
  • G. N. Tolmachev
  • A. V. Fofonov


Data of multiyear monitoring at the TOR station are used to calculate the average concentrations of gas and aerosol constituents in different air masses in the region of Tomsk. It is shown that CO2 and CH4 are characterized by a decrease in concentrations in going from an Arctic to a tropical air mass. Ozone shows the opposite pattern: the largest concentrations are recorded in the tropical air mass and the smallest concentrations in the Arctic air mass. Such gases as CO and SO2 show distributions more complex in character.


atmosphere aerosol air mass gas concentration content composition 



This work was supported by the Russian Science Foundation (grant no. 17-17-01095).


  1. 1.
    S. P. Khromov, Foundations of Synoptic Meteorology (Gidrometizdat, Leningrad, 1948) [in Russian].Google Scholar
  2. 2.
    V. E. Zuev, B. D. Belan, and G. O. Zadde, The Optical Weather (Nauka, Novosibirsk, 1990) [in Russian].Google Scholar
  3. 3.
    B. D. Belan, G. O. Zadde, A. I. Kuskov, and T. M. Rasskazchikova, “Spectral transmittance of the atmosphere of basic synoptic objects,” Atmos. Ocean. Opt. 7 (9), 640–645 (1994).Google Scholar
  4. 4.
    B. D. Belan, G. O. Zadde, and A. I. Kuskov, “Long-period variations of the spectral transmittance of the atmosphere,” Atmos. Ocean. Opt. 7 (10), 721–724 (1994).Google Scholar
  5. 5.
    R. M. Law, L. P. Steele, P. B. Krummel, and W. Zahorowski, “Synoptic variations in atmospheric CO2 at Cape Grim: A model intercomparison,” Tellus B 62 (5), 810–820 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    M. Klavins and V. Rodinov, “Influence of large-scale atmospheric circulation on climate in Latvia,” Boreal Environ. Res. 15 (6), 533–543 (2010).Google Scholar
  7. 7.
    J. Zhang, L. Wu, G. Huang, and M. Notaro, “Relationships between large-scale circulation patterns and carbon dioxide exchange by a deciduous forest,” J. Geophys. Res. 116 (D4), 1–13 (2011).CrossRefGoogle Scholar
  8. 8.
    R. J. Pope, N. H. Savage, M. P. Chipperfield, S. R. Arnold, and T. J. Osborn, “The influence of synoptic weather regimes on UK air quality: Analysis of satellite column NO2,” Atmos. Sci. Lett. 15 (3), 211–217 (2014).CrossRefGoogle Scholar
  9. 9.
    L. Pace, L. Boccacci, M. Casilli, P. Di Carlo, and S. Fattorini, “Correlations between weather conditions and airborne pollen concentration and diversity in a Mediterranean high-altitude site disclose unexpected temporal patterns,” Aerobiology 34 (1), 75–87 (2018).CrossRefGoogle Scholar
  10. 10.
    A. M. Zvyagintsev, G. Kakadzhanova, and O. A. Tarasova, “Influence of air mass transport directions on the seasonal variations of concentrations of minor gas atmospheric components in Europe,” Rus. Meteorol. Hydrol., No. 7, 441–448 (2010).Google Scholar
  11. 11.
    D. Coumou, J. Lehmann, and J. Beckmann, “The weakening summer circulation in the Northern Hemisphere mid-latitudes,” Science 348 (6232), 324–327 (2015).ADSCrossRefGoogle Scholar
  12. 12.
    I. A. Perez, M. L. Sanchez, M. A. Garcia, and N. Pardo, “An experimental relationship between airflow and carbon dioxide concentrations at a rural site,” Sci. Total Environ. 533, 432–438 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    J. Fu, B. Wang, Y. Chen, and Q. Ma, “The influence of continental air masses on the aerosols and nutrients deposition over the western North Pacific,” Atmos. Environ. 172, 1–11 (2018).ADSCrossRefGoogle Scholar
  14. 14.
    H. Flocas, A. Kelessis, C. Helmis, M. Petrakakis, M. Zoumakis, and K. Pappas, “Synoptic and local scale atmospheric circulation associated with air pollution episodes in an urban Mediterranean area,” Theor. Appl. Climatol. 95 (3-4), 265–277 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    S. A. Sitnov, I. I. Mokhov, G. I. Gorchakov, and A. V. Dzhola, “Smoke haze over the European part of Russia in the summer of 2016: A link to wildfires in Siberia and atmospheric circulation anomalies,” Rus. Meteorol. Hydrol., No. 8, S. 518–528 (2017).Google Scholar
  16. 16.
    U. Dayan and I. Levy, “Relationship between synoptic-scale atmospheric circulation and ozone concentrations over Israel,” J. Geophys. Res. 107 (D24), 1–12 (2002).CrossRefGoogle Scholar
  17. 17.
    J. E. Diem, M. A. Hursey, I. R. Morris, A. C. Murray, and R. A. Rodriguez, “Upper-level atmospheric circulation Patterns and ground-level ozone in the Atlanta Metropolitan area,” J. Appl. Meteorol. Climatol. 49 (11), 2185–2196 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    Y. Zhang, H. Mao, A. Ding, D. Zhou, and C. Fu, “Impact of synoptic weather patterns on spatio-temporal variation in surface O3 levels in Hong Kong during 1999–2011,” Atmos. Environ. 73, 41–50 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    J. de Arellano and N. P. M. Lipzig, “The impact of weather and atmospheric circulation on O3 and PM10 levels at a rural mid-latitude site,” Atmos. Chem. Phys. 9 (8), 2695–2714 (2009).ADSCrossRefGoogle Scholar
  20. 20.
    K. G. T. Dharshana, S. Kravtsov, and J. D. W. Kahl, “Relationship between synoptic weather disturbances and particulate matter air pollution over the United States,” J. Geophys. Res. 115 (D24), 1–16 (2010).Google Scholar
  21. 21.
    E. Flaounas, V. Kotroni, K. Lagouvardos, S. Kazad-zis, A. Gkikas, and N. Hatzianastassiou, “Cyclone contribution to dust transport over the Mediterranean region,” Atmos. Sci. Lett. 16 (4), 473–478 (2015).CrossRefGoogle Scholar
  22. 22.
    G. R. MeGregor and D. Bamzelis, “Synoptic typing and its application to the investigation of weather air pollution relationships, Birmingham, United Kingdom,” Theor. Appl. Climatol. 51 (4), 223–236 (1995).Google Scholar
  23. 23.
    Z. L. Fleming, P. S. Monks, and A. J. Manning, “Review: Untangling the influence of air-mass history in interpreting observed atmospheric composition,” Atmos. Res. 104-105 (1), 1–39 (2012).CrossRefGoogle Scholar
  24. 24.
    C. Orbe, M. Holzer, L. M. Polvani, and D. Waugh, “Air-mass origin as a diagnostic of tropospheric transport,” J. Geophys. Res.: Atmos. 118 (3), 1459–1470 (2013).ADSCrossRefGoogle Scholar
  25. 25.
    S. Freitag, A. D. Clarke, S. G. Howell, V. N. Kapustin, T. Campos, V. L. Brekhovskikh, and J. Zhou, “Combining airborne gas and aerosol measurements with HYSPLIT: A visualization tool for simultaneous evaluation of air mass history and back trajectory consistency,” Atmos. Meas. Tech. 7 (1), 107–128 (2014).CrossRefGoogle Scholar
  26. 26.
    P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, F. Nedelek, J. -D. Paris, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Large-scale studies of gaseous and aerosol composition of air over Siberia,” Opt. Atmos. Okeana 27 (3), 232–239 (2014).Google Scholar
  27. 27.
    N. F. Elanskii, I. I. Mokhov, I. B. Belikov, E. V. Berezina, A. S. Elokhov, V. A. Ivanov, N. V. Pankratova, O. V. Postylyakov, A. N. Safronov, A. I. Skorokhod, and R. A. Shumskii, “Gaseous admixtures in the atmosphere over Moscow during the 2010 summer,” Izv., Atmos. Ocean. Phys. 47 (6), 672–681 (2011).CrossRefGoogle Scholar
  28. 28.
    A. M. Zvyagintsev, O. B. Blyum, A. A. Glazkova, S. N. Kotel’nikov, I. N. Kuznetsova, V. A. Lapchenko, E. A. Lezina, E. A. Miller, V. A. Milyaev, A. P. Popikov, E. G. Semutnikova, O. A. Tarasova, and I. Yu. Shalygina, “Air pollution over European Russia and Ukraine under the hot summer conditions of 2010,” Izv., Atmos. Ocean. Phys. 47 (6), 699–707.Google Scholar
  29. 29.
    E. V. Fokeeva, A. N. Safronov, V. S. Rakitin, L. N. Yurganov, E. I. Grechko, and R. A. Shumskii, “Investigation of the 2010 July-August fires impact on carbon monoxide atmospheric pollution in Moscow and its outskirts, estimating of emissions,” Izv., Atmos. Ocean. Phys. 47 (6), 682–698 (2011).CrossRefGoogle Scholar
  30. 30.
    F. V. Kashin, V. N. Aref’ev, N. I. Sizov, R. M. Akimenko, and L. B. Upenek, “Background component of carbon oxide concentrations in the surface air (Obninsk monitoring station),” Izv., Atmos. Ocean. Phys. 52 (3), 247–252 (2016).CrossRefGoogle Scholar
  31. 31.
    P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Fofonov, A. V. Kozlov, J.-D. Paris, P. Nedelec, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, and G. N. Tolmachev, “Distribution of trace gases and aerosols in the troposphere over Siberia during wildfires of summer 2012,” J. Geophys. Res.: Atmos. 123 (4), 2285–2297 (2018).ADSGoogle Scholar
  32. 32.
    T. R. Lee, S. F. J. De Wekker, A. E. Andrews, J. Kofler, and J. Williams, “Carbon dioxide variability during cold front passages and fair weather days at a forested mountaintop site,” Atmos. Environ. 46 (1), 405–416 (2012).ADSCrossRefGoogle Scholar
  33. 33.
    X. M. Hu, P. M. Klein, M. Xue, A. Shapiro, and A. Nallapareddy, “Enhanced vertical mixing associated with a nocturnal cold front passage and its impact on near-surface temperature and ozone concentration,” J. Geophys. Res.: Atmos. 118 (7), 2714–2728 (2013).ADSGoogle Scholar
  34. 34.
    G. M. Scott and R. D. Diab, “Forecasting air pollution potential: A synoptic climatological approach,” J. Air Waste Manag. Assoc. 50 (10), 1831–1842 (2000).CrossRefGoogle Scholar
  35. 35.
    V. G. Arshinova, B. D. Belan, T. M. Rasskazchikova, A. N. Rogov, and G. N. Tolmachev, “Variation of the ozone concentration in the ground atmospheric layer by the passage of atmospheric fronts,” Atmos. Ocean. Opt. 8 (4), 625–631 (1995).Google Scholar
  36. 36.
    V. G. Arshinova, B. D. Belan, E. V. Vorontsova, G. O. Zadde, T. M. Rasskazchikova, O. I. Sem’yanova, and T. K. Sklyadneva, “Dynamics of aerosol variations during passage of atmospheric fronts,” Atmos. Ocean. Opt. 10 (7), 507–511 (1997).Google Scholar
  37. 37.
    P. N. Antokhin, M. Yu. Arshinov, V. G. Arshinova, B. D. Belan, D. K. Davydov, T. M. Rasskazchikova, A. V. Fofonov, G. Inoue, T. Machida, Ko. Shimoyama, and Sh. Sh. Maksutov, “CO2 concentration variation above the West Siberia area in different seasons during passes of atmospheric fronts,” Opt. Atmos. Okeana 26 (1), 24–31 (2013).CrossRefGoogle Scholar
  38. 38.
    M. Yu. Arshinov, B. D. Belan, V. V. Zuev, V. E. Zuev, V. K. Kovalevskii, A. V. Ligotskii, V. E. Meleshkin, M. V. Panchenko, E. V. Pokrovskii, A. N. Rogov, D. V. Simonenkov, and G. N. Tolmachev, “TOR-station for monitoring of atmospheric parameters,” Atmos. Ocean. Opt. 7 (8), 580–584 (1994).Google Scholar
  39. 39.
    C. Le Quere, R. N. Andrew, P. Friedlingstein, S. Sitch, J. Pongratz, A. C. Manning, J. I. Korsbakken, G. P. Peters, J. G. Canadell, R. B. Jackson, T. A. Boden, P. P. Tans, O. D. Andrews, V. K. Arora, D. C. E. Bakker, L. Barbero, M. Becker, R. A. Betts, L. Bopp, C. Chevallier, L. P. Chini, P. Ciais, C. E. Cosca, J. Cross, K. Currie, T. Gasser, I. Harris, J. Hauck, V. Haverd, R. A. Houghton, C. W. Hunt, G. Hurtt, T. Ilyina, A. K. Jain, E. Kato, M. Kautz, R. F. Keeling, K. K. Goldewijk, A. Kortzinger, P. Landschutzer, N. Lefevre, A. Lenton, S. Lienert, I. Lima, D. Lombardozzi, N. Metzl, F. Millero, P. M. S. Monteiro, D. R. Munro, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, X. A. Padin, A. Peregon, B. Pfeil, D. Pierrot, B.  Poulter, G. Rehder, J. Reimer, C. Rodenbeck, J. Schwinger, R. Seferian, I. Skjelvan, B. D. Stocker, H. Tian, B. Tilbrook, F. N. Tubiello, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, N. Viovy, N. Vuichard, A. P. Walker, A. J. Watson, A. J. Wiltshire, S. Zaehle, and D. Zhu, “Global carbon budget 2017,” Earth Syst. Sci. Data 10 (1), 405–448 (2018).ADSCrossRefGoogle Scholar
  40. 40.
    N. Shakhova, I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and O. Gustafsson, “Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic Shelf,” Science 327 (5970), 1246–1250 (2010).ADSCrossRefGoogle Scholar
  41. 41.
    I. P. Semiletov, N. E. Shakhova, V. I. Sergienko, I. I. Pipko, and O. V. Dudarev, “On carbon transport and fate in the East Siberian Arctic land-shelf-atmosphere system,” Environ. Res. Lett. 7 (1), 13 (2012).CrossRefGoogle Scholar
  42. 42.
    S. Hartery, R. Commane, J. Lindaas, C. Sweeney, J. Henderson, M. Mountain, N. Steiner, K. McDonald, S. J. Dinardo, C. E. Miller, S. C. Wofsy, and R. Y.‑W. Chang, “Estimating regional-scale methane flux and budgets using CARVE aircraft measurements over Alaska,” Atmos. Chem. Phys. 18 (1), 185–202 (2018).ADSCrossRefGoogle Scholar
  43. 43.
    O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, P. Nédélec, J.-D. Paris, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Vertical distributions of gaseous and aerosol admixtures in air over the Russian Arctic,” Atmos. Ocean. Opt. 31 (3), 300–310 (2018).CrossRefGoogle Scholar
  44. 44.
    S. A. Strode and S. Pawson, “Detection of carbon monoxide trends in the presence of interannual variability,” J. Geophys. Res.: Atmos. 118 (21), 12257–12273 (2013).ADSGoogle Scholar
  45. 45.
    Y. Zhou, H. Mao, K. Demerjian, C. Hogrefe, and J. Liu, “Regional and hemispheric influences on temporal variability in baseline carbon monoxide and ozone over the Northeast US,” Atmos. Environ. 164, 309–324 (2017).ADSCrossRefGoogle Scholar
  46. 46.
    Yu. A. Shtabkin, K. B. Moiseenko, A. I. Skorokhod, A.  V. Vasileva, and M. Khaimann, “Sources of and variations in tropospheric CO in Central Siberia: Numerical experiments and observations at the Zotino Tall Tower Observatory,” Izv., Atmos. Ocean. Phys. 52 (1), 45–56 (2016).CrossRefGoogle Scholar
  47. 47.
    L. El Amraoui, J.-L. Attie, P. Ricaud, W. A. Lahoz, A. Piacentini, V.-H. Peuch, J. X. Warner, R. Abida, J. Barre, and R. Zbinden, “Tropospheric CO vertical profiles deduced from total columns using data assimilation: Methodology and validation,” Atmos. Meas. Tech. 7 (9), 3035–3057 (2014).CrossRefGoogle Scholar
  48. 48.
    K. Park, L. K. Emmons, Z. Wang, and J. E. Mak, “Joint application of concentration and δ18O to investigate the global atmospheric CO budget,” Atmosphere 6 (5), 547–578 (2015).ADSCrossRefGoogle Scholar
  49. 49.
    V. Vestreng, G. Myhre, H. Fagerli, S. Reis, and L. Tarrason, “Twenty-five years of continuous sulphur dioxide emission reduction in Europe,” Atmos. Chem. Phys. 7 (13), 3663–3681 (2007).ADSCrossRefGoogle Scholar
  50. 50.
    S. J. Smith, J. van Aardenne, Z. Klimont, R. J. Andres, A. Volke, and S. D. Arias, “Anthropogenic sulfur dioxide emissions: 1850–2005,” Atmos. Chem. Phys. 11 (3), 1101–1116 (2011).ADSCrossRefGoogle Scholar
  51. 51.
    S. Henschel, X. Querol, R. Atkinson, M. Pandolfi, A. Zeka, A. Le Tertre, A. Analitis, K. Katsouyanni, O. Chanel, M. Pascal, C. Bouland, D. Haluza, S. Medina, and P. G. Goodman, “Ambient air SO2 patterns in 6 European cities,” Atmos. Environ. 79, 236–247 (2013).ADSCrossRefGoogle Scholar
  52. 52.
    B. D. Belan, Tropospheric Ozone (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].Google Scholar
  53. 53.
    B. D. Belan, D. E. Savkin, and G. N. Tolmachev, “Air—temperature dependence of the ozone generation rate in the surface air layer, Atmos. Ocean. Opt. 31 (2), 187–196 (2018).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • O. Yu. Antokhina
    • 1
    Email author
  • P. N. Antokhin
    • 1
    Email author
  • V. G. Arshinova
    • 1
  • M. Yu. Arshinov
    • 1
  • B. D. Belan
    • 1
  • S. B. Belan
    • 1
  • D. K. Davydov
    • 1
  • N. V. Dudorova
    • 1
  • G. A. Ivlev
    • 1
  • A. V. Kozlov
    • 1
  • T. M. Rasskazchikova
    • 1
  • D. E. Savkin
    • 1
  • D. V. Simonenkov
    • 1
  • T. K. Sklyadneva
    • 1
  • G. N. Tolmachev
    • 1
  • A. V. Fofonov
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations