Skip to main content

Lidar Complex for Measurement of Vertical Ozone Distribution in the Upper Troposphere–Stratosphere

Abstract

A lidar complex designed at V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences (Tomsk) and used at the Siberian Lidar Station (56.5° N, 85.0° W) for the study of ozone dynamics near tropopause and for tracking global ozonosphere changes is presented. It allows measurements of ozone vertical distribution in the upper troposphere–stratosphere when sounding using the differential absorption technique at the wavelength pairs 299/341 and 308/353 nm. The lidar complex covers altitudes from ∼5 to ∼45 km.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. T. Molina and M. T. Molina, “Absolute absorption cross section of ozone in the 185-nm to 350-nm wavelength range,” J. Geophys. Res. D 91 (13), 14.501–14.508 (1988).

    Google Scholar 

  2. 2.

    E. Galani, D. Balis, P. Zanis, C. Zerefos, A. Papayannis, H. Wernli, and E. Gerasopoulo, “Observations of stratosphere-to-troposphere transport events over the eastern Mediterranean using a ground-based lidar system,” J. Geophys. Res. D. 108 (12), STA12-1–STA12-10 (2003).

    Google Scholar 

  3. 3.

    M. Nakazato, T. Nagai, T. Sakai, and Ya. Hirose, “Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide,” Appl. Opt. 46 (12), 2269–2279 (2007).

    ADS  Article  Google Scholar 

  4. 4.

    V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, A. S. Galustov, Yu. M. Kovalev, A. M. Prokhorov, E. S. Svetogorov, S. S. Khmelevtsov, and Ch. H. Lee, “Excimer-laser-based lidar system for stratospheric and tropospheric ozone measurements,” Quantum Electron. 24 (6), 546–551 (1994).

    ADS  Article  Google Scholar 

  5. 5.

    H. Eisele, H. E. Scheel, R. Sladkovic, and T. Trickl, “High resolution lidar measurements of stratosphere–troposphere exchange,” J. Atmos. Sci. 56 (3), 319–330 (1999).

    ADS  Article  Google Scholar 

  6. 6.

    V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, and Yu. S. Shablin, “Measurement of the ozone concentration in the lower troposphere by a differential absorption lidar system,” Quantum Electron. 26 (4), 355–359 (1996).

    ADS  Article  Google Scholar 

  7. 7.

    S. V. Mel’chenko, A. N. Panchenko, and V. F. Tarasenko, “Stimulated Raman scattering conversion of radiation from an electric-discharge XeCl laser,” Quantum Electron. 16 (7), 979–981. 1986.

    Google Scholar 

  8. 8.

    L. Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, and H. van den Bergh, “Experimental investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1998).

    Article  Google Scholar 

  9. 9.

    G. G. Matvienko, Yu. S. Balin, S. M. Bobrovnikov, O. A. Romanovskii, G. P. Kokhanenko, S. V. Samoilova, I. E. Penner, E. V. Gorlov, V. I. Zharkov, S. A. Sadovnikov, O. V. Kharchenko, S. V. Yakovlev, O.E. Bazhenov, V. D. Burlakov, S. I. Dolgii, A. P. Makeev, A. A. Nevzorov, and A. V. Nevzorov, Siberian Lidar Station: Equaipment and Results, Ed. by G.G. Matvienko (Publishing House of IAO SB RAS, Tomsk, 2016) [in Russian].

    Google Scholar 

  10. 10.

    V. V. Zuev, V. D. Burlakov, S. I. Dolgii, and A. V. Nevzorov, “Differential absorption lidar for ozone sensing in the upper troposphere–lower stratosphere,” Atmos. Ocean. Opt. 21 (10), 765–768 (2008).

    Google Scholar 

  11. 11.

    V. D. Burlakov, S. I. Dolgii, A. P. Makeev, A. V. Nevzorov, O. A. Romanovskii, and O. V. Kharchenko, “A differential-absorption lidar for ozone sensing in the upper atmosphere–lower stratosphere,” Instrum. Exp. Tech. 53 (6), 886–889 (2010).

    Article  Google Scholar 

  12. 12.

    A. A. Nevzorov, V. D. Burlakov, S. I. Dolgii, A. V. Nevzorov, O. A. RomanovskiI, O. V. Kharchenko, and Yu. V. Gridnev, “Comparison of lidar and satellite measurements of vertical ozone profiles using data received in 2015,” Opt. Atmos. Okeana 29 (8), 703–708 (2016).

    Google Scholar 

  13. 13.

    H. Zhang, S. Wu, Y. Huang, and Y. Wang, “Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere,” Atmos. Chem. Phys. 14, 4079–4086 (2014). doi 10.5194/acp-14-4079-2014

    ADS  Article  Google Scholar 

  14. 14.

    G. Kirgis, T. Leblanc, I. S. McDermid, and T. D. Walsh, “Stratospheric ozone interannual variability (1995–2011) as observed by lidar and satellite at Mauna Loa Observatory, HI and Table Mountain Facility, CA,” Atmos. Chem. Phys. 13, 5033–5047 (2013). doi 10.5194/acp-13-5033-2013

    ADS  Article  Google Scholar 

  15. 15.

    A. J. Krueger and R. A. Minzner, “Mid-latitude ozone model for the 1976 U.S. Standard Atmosphere,” J. Geophys. Res. D 81 (24), 4477 (1976).

    ADS  Article  Google Scholar 

  16. 16.

    https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/MLS/V04/L2GPOVP/O3/(Cited on May 3, 2018.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Nevzorov.

Additional information

Published in Russian in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dolgii, S.I., Nevzorov, A.A., Nevzorov, A.V. et al. Lidar Complex for Measurement of Vertical Ozone Distribution in the Upper Troposphere–Stratosphere. Atmos Ocean Opt 31, 702–708 (2018). https://doi.org/10.1134/S1024856018060209

Download citation

Keywords

  • lidar
  • laser sensing
  • ozone
  • AURA
  • MetOp