Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 6, pp 702–708 | Cite as

Lidar Complex for Measurement of Vertical Ozone Distribution in the Upper Troposphere–Stratosphere

  • S. I. Dolgii
  • A. A. NevzorovEmail author
  • A. V. Nevzorov
  • A. P. Makeev
  • O. A. Romanovskii
  • O. V. Kharchenko
Optical Instrumentation
  • 12 Downloads

Abstract

A lidar complex designed at V.E. Zuev Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences (Tomsk) and used at the Siberian Lidar Station (56.5° N, 85.0° W) for the study of ozone dynamics near tropopause and for tracking global ozonosphere changes is presented. It allows measurements of ozone vertical distribution in the upper troposphere–stratosphere when sounding using the differential absorption technique at the wavelength pairs 299/341 and 308/353 nm. The lidar complex covers altitudes from ∼5 to ∼45 km.

Keywords

lidar laser sensing ozone AURA MetOp 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. T. Molina and M. T. Molina, “Absolute absorption cross section of ozone in the 185-nm to 350-nm wavelength range,” J. Geophys. Res. D 91 (13), 14.501–14.508 (1988).Google Scholar
  2. 2.
    E. Galani, D. Balis, P. Zanis, C. Zerefos, A. Papayannis, H. Wernli, and E. Gerasopoulo, “Observations of stratosphere-to-troposphere transport events over the eastern Mediterranean using a ground-based lidar system,” J. Geophys. Res. D. 108 (12), STA12-1–STA12-10 (2003).Google Scholar
  3. 3.
    M. Nakazato, T. Nagai, T. Sakai, and Ya. Hirose, “Tropospheric ozone differential-absorption lidar using stimulated Raman scattering in carbon dioxide,” Appl. Opt. 46 (12), 2269–2279 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, A. S. Galustov, Yu. M. Kovalev, A. M. Prokhorov, E. S. Svetogorov, S. S. Khmelevtsov, and Ch. H. Lee, “Excimer-laser-based lidar system for stratospheric and tropospheric ozone measurements,” Quantum Electron. 24 (6), 546–551 (1994).ADSCrossRefGoogle Scholar
  5. 5.
    H. Eisele, H. E. Scheel, R. Sladkovic, and T. Trickl, “High resolution lidar measurements of stratosphere–troposphere exchange,” J. Atmos. Sci. 56 (3), 319–330 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    V. S. Bukreev, S. K. Vartapetov, I. A. Veselovskii, and Yu. S. Shablin, “Measurement of the ozone concentration in the lower troposphere by a differential absorption lidar system,” Quantum Electron. 26 (4), 355–359 (1996).ADSCrossRefGoogle Scholar
  7. 7.
    S. V. Mel’chenko, A. N. Panchenko, and V. F. Tarasenko, “Stimulated Raman scattering conversion of radiation from an electric-discharge XeCl laser,” Quantum Electron. 16 (7), 979–981. 1986.Google Scholar
  8. 8.
    L. Schoulepnikoff, V. Mitev, V. Simeonov, B. Calpini, and H. van den Bergh, “Experimental investigation of high-power single-pass Raman shifters in the ultraviolet with Nd:YAG and KrF lasers,” Appl. Opt. 36, 5026–5043 (1998).CrossRefGoogle Scholar
  9. 9.
    G. G. Matvienko, Yu. S. Balin, S. M. Bobrovnikov, O. A. Romanovskii, G. P. Kokhanenko, S. V. Samoilova, I. E. Penner, E. V. Gorlov, V. I. Zharkov, S. A. Sadovnikov, O. V. Kharchenko, S. V. Yakovlev, O.E. Bazhenov, V. D. Burlakov, S. I. Dolgii, A. P. Makeev, A. A. Nevzorov, and A. V. Nevzorov, Siberian Lidar Station: Equaipment and Results, Ed. by G.G. Matvienko (Publishing House of IAO SB RAS, Tomsk, 2016) [in Russian].Google Scholar
  10. 10.
    V. V. Zuev, V. D. Burlakov, S. I. Dolgii, and A. V. Nevzorov, “Differential absorption lidar for ozone sensing in the upper troposphere–lower stratosphere,” Atmos. Ocean. Opt. 21 (10), 765–768 (2008).Google Scholar
  11. 11.
    V. D. Burlakov, S. I. Dolgii, A. P. Makeev, A. V. Nevzorov, O. A. Romanovskii, and O. V. Kharchenko, “A differential-absorption lidar for ozone sensing in the upper atmosphere–lower stratosphere,” Instrum. Exp. Tech. 53 (6), 886–889 (2010).CrossRefGoogle Scholar
  12. 12.
    A. A. Nevzorov, V. D. Burlakov, S. I. Dolgii, A. V. Nevzorov, O. A. RomanovskiI, O. V. Kharchenko, and Yu. V. Gridnev, “Comparison of lidar and satellite measurements of vertical ozone profiles using data received in 2015,” Opt. Atmos. Okeana 29 (8), 703–708 (2016).Google Scholar
  13. 13.
    H. Zhang, S. Wu, Y. Huang, and Y. Wang, “Effects of stratospheric ozone recovery on photochemistry and ozone air quality in the troposphere,” Atmos. Chem. Phys. 14, 4079–4086 (2014). doi 10.5194/acp-14-4079-2014ADSCrossRefGoogle Scholar
  14. 14.
    G. Kirgis, T. Leblanc, I. S. McDermid, and T. D. Walsh, “Stratospheric ozone interannual variability (1995–2011) as observed by lidar and satellite at Mauna Loa Observatory, HI and Table Mountain Facility, CA,” Atmos. Chem. Phys. 13, 5033–5047 (2013). doi 10.5194/acp-13-5033-2013ADSCrossRefGoogle Scholar
  15. 15.
    A. J. Krueger and R. A. Minzner, “Mid-latitude ozone model for the 1976 U.S. Standard Atmosphere,” J. Geophys. Res. D 81 (24), 4477 (1976).ADSCrossRefGoogle Scholar
  16. 16.
    https://avdc.gsfc.nasa.gov/pub/data/satellite/Aura/MLS/V04/L2GPOVP/O3/(Cited on May 3, 2018.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. I. Dolgii
    • 1
  • A. A. Nevzorov
    • 1
    Email author
  • A. V. Nevzorov
    • 1
  • A. P. Makeev
    • 1
  • O. A. Romanovskii
    • 1
    • 2
  • O. V. Kharchenko
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations