Skip to main content

Study of the Possible Impact of the Calbuco Volcano Eruption on the Abnormal Destruction of Stratospheric Ozone over the Antarctic in Spring 2015


One of the strongest stratospheric ozone depletion events over the Antarctic was observed in October–November 2015. The increase in the ozone hole was associated with the eruption of Calbuco volcano (Chile) in April 2015, with a maximum plume altitude of ~17 km. Based on the ERA-Interim reanalysis data and the NOAA HYSPLIT trajectory model we estimate the possibility of the volcanic aerosol penetrating the polar vortex. It is shown that volcanic aerosol could not contribute to the intensification of ozone depletion reactions since it was outside the stable polar vortex.

This is a preview of subscription content, access via your institution.


  1. D. W. Waugh and W. J. Randel, “Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics,” J. Atmos. Sci. 56 (11), 1594–1613 (1999).

    ADS  Article  Google Scholar 

  2. D. W. Waugh and L. M. Polvani, “Stratospheric polar vortices,” Stratos, Dynamics: Trans. Chem. Geophys. Monograph Ser. 190, 43–57 (2010).

    ADS  Google Scholar 

  3. P. A. Newman, “Chemistry and dynamics of the Antarctic ozone hole,” Stratos. Dynamics: Trans. Chem. Geophys. Monograph Ser. 190, 157–171 (2010).

    ADS  Google Scholar 

  4. S. Solomon, R. R. Garcia, F. S. Rowland, and D. J. Wuebbles, “On the depletion of Antarctic ozone,” Nature 321, 755–758 (1986).

    ADS  Article  Google Scholar 

  5. B. J. Finlayson-Pitts and J. N. Pitts, Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications (Academic Press, California, 2000).

    Google Scholar 

  6. G. L. Manney and R. W. Zurek, “On the motion of air through the stratospheric polar vortex,” J. Atmos. Sci. 51 (20), 2973–2994 (1994).

    ADS  Article  Google Scholar 

  7. A. H. Sobel, R. A. Plumb, and D. W. Waugh, “Methods of calculating transport across the polar vortex edge,” J. Atmos. Sci. 54 (18), 2241–2260 (1997).

    ADS  Article  Google Scholar 

  8. P. J. Young, K. H. Rosenlof, S. Solomon, S. C. Sherwood, Q. Fu, and J.-F. Lamarque, “Changes in stratospheric temperatures and their implications for changes in the Brewer-Dobson circulation (1979–2005),” J. Clim. 25, 1759–1772 (2012).

    ADS  Article  Google Scholar 

  9. D. J. Hofmann and S. Solomon, “Ozone destruction through heterogeneous chemistry following the eruption of El Chichon,” J. Geophys. Res., D 94 (4), 5029–5041 (1989).

    ADS  Article  Google Scholar 

  10. M. P. McCormick, L. W. Thomason, and C. R. Trepte, “Atmospheric effects of the Mt. Pinatubo eruption,” Nature 373 (6513), 399–404 (1995).

    ADS  Article  Google Scholar 

  11. W. J. Randel, F. Wu, J. M. Russell, J. W. Waters, and L. Froidevaux, “Ozone and temperature changes in the stratosphere following the eruption of Pinatubo,” J. Geophys. Res., D 100 (8), 16753–16764 (1995).

    ADS  Article  Google Scholar 

  12. S. Solomon, R. W. Portmann, R. R. Garcia, W. J. Randel, F. Wu, R. M. Nagatani, J. Gleason, L. Thomason, L. R. Poole, and M. P. McCormick, “Ozone depletion at midlatitudes: Coupling of volcanic aerosols and temperature variability to anthropogenic chlorine,” Geophys. Res. Lett. 25 (11), 1871–1874 (1998).

    ADS  Article  Google Scholar 

  13. A. Robock, “Volcanic eruptions and climate,” Rev. Geophys. 38 (2), 191–219 (2000).

    ADS  Article  Google Scholar 

  14. S. Solomon, D. J. Ivy, D. Kinnison, M. J. Mills, R. R. Neely, and A. Schmidt, “Emergence of healing in the Antarctic ozone layer,” Science 353, 269–274 (2016).

    ADS  Article  Google Scholar 

  15. D. J. Ivy, S. Solomon, D. Kinnison, M. J. Mills, A. Schmidt, and R. R. Neely, “III, The influence of the Calbuco eruption on the 2015 Antarctic ozone hole in a fully coupled chemistry-climate model,” Geophys. Res. Lett. 44 (5), 2556–2561 (2017).

    ADS  Article  Google Scholar 

  16. P. A. Newman, S. R. Kawa, and E. R. Nash, “On the size of the Antarctic ozone hole,” Geophys. Res. Lett. 31 (21), L21104 (2004).

    Google Scholar 

  17. Goddard Space Flight Center (GSFC). NASA’s Ozone Hole Watch Web Site (online database). http://ozonewatch. (Cited March 25, 2018).

  18. The European Centre for Medium-Range Weather Forecasts (ECMWF). ERA Interim reanalysis (online database). March 25, 2018).

  19. Global Volcanism Program (GVP). Smithsonian National Museum of Natural History. https://volcano. (Cited March 25, 2018).

  20. V. I. Gryazin and S. A. Beresnev, “Influence of vertical wind on stratospheric aerosol transport,” Meteorol. Atmos. Phys. 110 (3-4), 151–162 (2011).

    Google Scholar 

  21. K. M. Malina, Handbok on Work with Sulphuric Acid (Khimiya, Moscow, 1971) [in Russian].

    Google Scholar 

  22. N. Bègue, D. Vignelles, G. Berthet, T. Portafaix, G. Payen, F. Jégou, H. Benchérif, J. Jumelet, J.-P. Vernier, T. Lurton, J.-B. Renard, L. Clarisse, V. Duverger, F. Posny, J.-M. Metzger, and S. Godin-Beekmann, “Long-range isentropic transport of stratospheric aerosols over Southern Hemisphere following the Calbuco eruption in April 2015,” Atmos. Chem. Phys. 17 (24), 15019–15036 (2017).

    ADS  Article  Google Scholar 

  23. R. R. Draxler and G. D. Hess, “An overview of the HYSPLIT_4 modeling system for trajectories, dispersion, and deposition,” Aust. Meteorol. Mag. 47, 295–308 (1998).

    Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to V. V. Zuev.

Additional information

Original Russian Text © V.V. Zuev, E.S. Savelieva, T.V. Parezheva, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zuev, V.V., Savelieva, E.S. & Parezheva, T.V. Study of the Possible Impact of the Calbuco Volcano Eruption on the Abnormal Destruction of Stratospheric Ozone over the Antarctic in Spring 2015. Atmos Ocean Opt 31, 665–669 (2018).

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI:


  • Calbuco volcano eruption
  • Antarctic ozone hole
  • the southern polar vortex