Skip to main content

Modified Beam-Splitting 1 (MBS-1) Algorithm for Solving the Problem of Light Scattering by Nonconvex Atmospheric Ice Particles

Abstract

A new algorithm for solving the problem of light scattering by nonconvex crystals typical for cirrus clouds is presented. It is based on the beam tracing algorithm for convex particles (Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences). The new algorithm is applied for solving the problem of light scattering by hollow-column particles and aggregates of hexagonal ice columns. It is an opensource freely available algorithm.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K.-N. Liou, An Introduction to Atmospheric Radiation (Acad. Press, San Diego, 2002).

    Google Scholar 

  2. 2.

    K. S. Kunz and R. J. Luebbers, Finite Difference Time Domain Method for Electromagnetics (FL CRC Press, Boca Raton, FL, 1993).

    Google Scholar 

  3. 3.

    A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1998).

    MATH  Google Scholar 

  4. 4.

    E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

    ADS  Article  Google Scholar 

  5. 5.

    M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106, 546–557 (2007).

    ADS  Article  Google Scholar 

  6. 6.

    M. A. Yurkin and A. G. Hoekstra, “The discretedipole-approximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    M. A. Yurkin and A. G. Hoekstra, User manual for the discrete dipole approximation code ADDA 1.3b4. http://a-dda.googlecode. com/svn/tags/rel_1.3b4/doc/manual.pdf (Cited July 27, 2017).

    Google Scholar 

  8. 8.

    Q. Cai and K.-N. Liou, “Polarized light scattering by hexagonal ice crystals: Theory,” Appl. Opt. 21, 3569–3580 (1982).

    ADS  Article  Google Scholar 

  9. 9.

    O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Ice-Crystal Clouds (Gidrometeoizdat, Leningrad, 1984) [in Russian].

    Google Scholar 

  10. 10.

    A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).

    ADS  Article  Google Scholar 

  11. 11.

    D. N. Romashov, “Backscattering phase matrix of monodisperse ensembles of hexagonal water ice crystals,” Atmos. Ocean. Opt. 12 (5), 376–384 (1999).

    Google Scholar 

  12. 12.

    A. G. Borovoi and I. A. Grishin, “Scattering matrices for large ice crystal particles,” J. Opt. Soc. Am. A. 20, 2071–2080 (2003).

    ADS  Article  Google Scholar 

  13. 13.

    A. Borovoi, A. Konoshonkin, and N. Kustova, “The physics-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014).

    ADS  Article  Google Scholar 

  14. 14.

    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 164, 175–183 (2015).

    ADS  Article  Google Scholar 

  15. 15.

    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm,” Atmos. Ocean. Opt. 28 (5), 441–447 (2015).

    Article  Google Scholar 

  16. 16.

    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 2. Comparison with the ray tracing algorithm,” Atmos. Ocean. Opt. 28 (5), 448–454 (2015).

    Article  Google Scholar 

  17. 17.

    A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38 (15), 2881–1884 (2013).

    ADS  Article  Google Scholar 

  18. 18.

    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Peculiarities of the depolarization ratio in lidar signals for randomly oriented ice crystals of cirrus clouds,” Opt. Atmos. Okeana 26 (5), 385–387 (2013).

    Google Scholar 

  19. 19.

    A. Konoshonkin, Z. Wang, A. Borovoi, N. Kustova, D. Liu, and C. Xie, “Backscatter by azimuthally oriented ice crystals of cirrus clouds,” Opt. Express. 24 (18), A1257–A1268 (2016).

    Google Scholar 

  20. 20.

    A. V. Konoshonkin, “Simulation of the scanning lidar signals for a cloud of monodisperse quasi-horizontal oriented particle,” Opt. Atmos. Okeana 29 (12), 1053–1060 (2016).

    Google Scholar 

  21. 21.

    A. V. Konoshonkin, “Optical characteristics of irregular ice columns,” Atmos. Ocean. Opt. 30 (6), 508–516 (2017).

    Article  Google Scholar 

  22. 22.

    ftp://ftp.iao.ru/pub/GWDT/Physical_optics/Backscattering/(Cited January 30, 2018).

  23. 23.

    A. D. Aleksandrov, A. L. Verner, V. I. Ryzhik, Stereometry: Geometry in Space (Alfa, Visaginas, 1998) [in Russian].

    Google Scholar 

  24. 24.

    I. Sutherland and G. Hodgman, “Reentrant polygon clipping,” Commun. ACM 17, 32–42 (1974).

    Article  MATH  Google Scholar 

  25. 25.

    C. Hoare, “Quicksort,” Comput. J. 5 (1), 16–19 (1962).

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Beam-Splitting-concave. https://github.com/Heart-Under-Blade/Beam-Splitting-concave/(Cited January 30, 2018).

  27. 27.

    A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Limits to applicability of geometrical optics approximation to light backscattering by quasihorizontally oriented hexagonal ice plates,” Atmos. Ocean. Opt. 28 (1), 74–81 (2015).

    Article  Google Scholar 

  28. 28.

    P. Yang, L. Bi, B. A. Baum, K. N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, “Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm,” J. Atmos. Sci. 70, 330–347 (2013).

    ADS  Article  Google Scholar 

  29. 29.

    A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystal,” J. Atmos. Sci. 53 (19), 2813–2825 (1996).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. N. Timofeev.

Additional information

Original Russian Text © D.N. Timofeev, A.V. Konoshonkin, N.V. Kustova, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Timofeev, D.N., Konoshonkin, A.V. & Kustova, N.V. Modified Beam-Splitting 1 (MBS-1) Algorithm for Solving the Problem of Light Scattering by Nonconvex Atmospheric Ice Particles. Atmos Ocean Opt 31, 642–649 (2018). https://doi.org/10.1134/S1024856018060179

Download citation

Keywords

  • algorithm
  • nonconvex particles
  • aggregates
  • physical optics
  • geometrical optics
  • cirrus clouds