Abstract
A new algorithm for solving the problem of light scattering by nonconvex crystals typical for cirrus clouds is presented. It is based on the beam tracing algorithm for convex particles (Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences). The new algorithm is applied for solving the problem of light scattering by hollow-column particles and aggregates of hexagonal ice columns. It is an opensource freely available algorithm.
This is a preview of subscription content, access via your institution.
References
K.-N. Liou, An Introduction to Atmospheric Radiation (Acad. Press, San Diego, 2002).
K. S. Kunz and R. J. Luebbers, Finite Difference Time Domain Method for Electromagnetics (FL CRC Press, Boca Raton, FL, 1993).
A. Taflove, Advances in Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, Boston, 1998).
E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).
M. A. Yurkin, V. P. Maltsev, and A. G. Hoekstra, “The discrete dipole approximation for simulation of light scattering by particles much larger than the wavelength,” J. Quant. Spectrosc. Radiat. Transfer 106, 546–557 (2007).
M. A. Yurkin and A. G. Hoekstra, “The discretedipole-approximation code ADDA: Capabilities and known limitations,” J. Quant. Spectrosc. Radiat. Transfer 112, 2234–2247 (2011).
M. A. Yurkin and A. G. Hoekstra, User manual for the discrete dipole approximation code ADDA 1.3b4. http://a-dda.googlecode. com/svn/tags/rel_1.3b4/doc/manual.pdf (Cited July 27, 2017).
Q. Cai and K.-N. Liou, “Polarized light scattering by hexagonal ice crystals: Theory,” Appl. Opt. 21, 3569–3580 (1982).
O. A. Volkovitskii, L. N. Pavlova, and A. G. Petrushin, Optical Properties of Ice-Crystal Clouds (Gidrometeoizdat, Leningrad, 1984) [in Russian].
A. Macke, “Scattering of light by polyhedral ice crystals,” Appl. Opt. 32, 2780–2788 (1993).
D. N. Romashov, “Backscattering phase matrix of monodisperse ensembles of hexagonal water ice crystals,” Atmos. Ocean. Opt. 12 (5), 376–384 (1999).
A. G. Borovoi and I. A. Grishin, “Scattering matrices for large ice crystal particles,” J. Opt. Soc. Am. A. 20, 2071–2080 (2003).
A. Borovoi, A. Konoshonkin, and N. Kustova, “The physics-optics approximation and its application to light backscattering by hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 146, 181–189 (2014).
A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam-splitting code for light scattering by ice crystal particles within geometric-optics approximation,” J. Quant. Spectrosc. Radiat. Transfer 164, 175–183 (2015).
A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 1. Theoretical foundations of the algorithm,” Atmos. Ocean. Opt. 28 (5), 441–447 (2015).
A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Beam splitting algorithm for the problem of light scattering by atmospheric ice crystals. Part 2. Comparison with the ray tracing algorithm,” Atmos. Ocean. Opt. 28 (5), 448–454 (2015).
A. Borovoi, A. Konoshonkin, and N. Kustova, “Backscattering by hexagonal ice crystals of cirrus clouds,” Opt. Lett. 38 (15), 2881–1884 (2013).
A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Peculiarities of the depolarization ratio in lidar signals for randomly oriented ice crystals of cirrus clouds,” Opt. Atmos. Okeana 26 (5), 385–387 (2013).
A. Konoshonkin, Z. Wang, A. Borovoi, N. Kustova, D. Liu, and C. Xie, “Backscatter by azimuthally oriented ice crystals of cirrus clouds,” Opt. Express. 24 (18), A1257–A1268 (2016).
A. V. Konoshonkin, “Simulation of the scanning lidar signals for a cloud of monodisperse quasi-horizontal oriented particle,” Opt. Atmos. Okeana 29 (12), 1053–1060 (2016).
A. V. Konoshonkin, “Optical characteristics of irregular ice columns,” Atmos. Ocean. Opt. 30 (6), 508–516 (2017).
ftp://ftp.iao.ru/pub/GWDT/Physical_optics/Backscattering/(Cited January 30, 2018).
A. D. Aleksandrov, A. L. Verner, V. I. Ryzhik, Stereometry: Geometry in Space (Alfa, Visaginas, 1998) [in Russian].
I. Sutherland and G. Hodgman, “Reentrant polygon clipping,” Commun. ACM 17, 32–42 (1974).
C. Hoare, “Quicksort,” Comput. J. 5 (1), 16–19 (1962).
Beam-Splitting-concave. https://github.com/Heart-Under-Blade/Beam-Splitting-concave/(Cited January 30, 2018).
A. V. Konoshonkin, N. V. Kustova, and A. G. Borovoi, “Limits to applicability of geometrical optics approximation to light backscattering by quasihorizontally oriented hexagonal ice plates,” Atmos. Ocean. Opt. 28 (1), 74–81 (2015).
P. Yang, L. Bi, B. A. Baum, K. N. Liou, G. W. Kattawar, M. I. Mishchenko, and B. Cole, “Spectrally consistent scattering, absorption, and polarization properties of atmospheric ice crystals at wavelengths from 0.2 to 100 μm,” J. Atmos. Sci. 70, 330–347 (2013).
A. Macke, J. Mueller, and E. Raschke, “Single scattering properties of atmospheric ice crystal,” J. Atmos. Sci. 53 (19), 2813–2825 (1996).
Author information
Authors and Affiliations
Corresponding author
Additional information
Original Russian Text © D.N. Timofeev, A.V. Konoshonkin, N.V. Kustova, 2018, published in Optika Atmosfery i Okeana.
Rights and permissions
About this article
Cite this article
Timofeev, D.N., Konoshonkin, A.V. & Kustova, N.V. Modified Beam-Splitting 1 (MBS-1) Algorithm for Solving the Problem of Light Scattering by Nonconvex Atmospheric Ice Particles. Atmos Ocean Opt 31, 642–649 (2018). https://doi.org/10.1134/S1024856018060179
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1134/S1024856018060179