Skip to main content

Carbon Dioxide and Water Vapor Continuum Absorption in the Infrared Spectral Region

Abstract

Н2О and СО2 continuum absorption within the IR absorption bands depends on the frequency boundaries within which the local line contribution is accounted for. Correlation between the maximal value of this boundary and the line shape at large frequency detuning is observed for the 4.3-, 2.7-, 1.4-, and 1.2-μm СО2 bands, as well as for rotational and 1400–1900-, 3500–3900-, and 5200–5500-cm−1 Н2О bands. The continuum absorption can be unambiguously determined from measurements in the band wings if one assumes that it is purely continual there. Within bands, the continuum absorption cannot be determined unambiguously and depends on the local line contribution boundary chosen.

This is a preview of subscription content, access via your institution.

References

  1. S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res 23 (3-4), 229–241 (1989).

    Google Scholar 

  2. T. E. Klimeshina and O. B. Rodimova, “Continuum absorption in the 4.3-μm CO2 band,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 92920H (2014).

    Google Scholar 

  3. B. H. Winters, S. J. Silverman, and W. S. Benedict, “Line shape in the wing beyond the band head of the 4.3-μm band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 135 (4), 527–537 (1964).

    Article  Google Scholar 

  4. D. E. Burch, D. A. Gryvnak, R. R. Patty, and Ch. E. Bartky, “Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO2 lines,” J. Opt. Soc. Am. 59 (3), 267–280 (1969).

    Article  ADS  Google Scholar 

  5. D. E. Burch and D. A. Gryvnak, “Absorption of infrared radiant energy by CO2 and H2O. V. Absorption by CO2 between 1100 and 1835 cm–1 (9.1–5.5 μm),” J. Opt. Soc. Am. 61 (4), 499–503 (1971).

    Article  ADS  Google Scholar 

  6. M. O. Bulanin, V. P. Bulychev, P. V. Granskii, A. P. Kouzov, and M. V. Tonkov, “Study of absorption functions of SO2 near 4.3 and 15-μm bands,” in Problems of Atmospheric Physics (Izd. LGU, Leningrad, 1976), Is. 13, p. 14–24 [in Russian].

    Google Scholar 

  7. M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, and N. N. Filipov, “Influence of the line interference on the vibratio-rotation band shapes,” J. Quant. Spectrosc. Radiat. Transfer 31 (6), 521–543 (1984).

    Article  ADS  Google Scholar 

  8. C. Cousin, R. LeDoucen, C. Boulet, A. Henry, and D. Robert, “Line coupling in the temperature and fre-quency dependence of absorption in the microwindows of the 4.3-μm CO2 band,” J. Quant. Spectrosc. Radiat. Transfer 36 (6), 521–538 (1986).

    Article  ADS  Google Scholar 

  9. J. M. Hartmann and M. Y. Perrin, “Measurements of pure CO2 absorption beyond the ν3 band at high temperatures,” Appl. Opt. 28 (13), 2550–2553 (1989).

    Article  ADS  Google Scholar 

  10. J. Boissoles, V. Menoux, R. Le Doucen, C. Boulet, and D. Robert, “Collisionally induced population transfer effect in infrared absorption spectra. III. Temperature dependence of absorption in the aIr-broadened wing of CO2 ν3 band,” J. Chem. Phys. 93 (4), 2217–2221 (1990).

    Article  ADS  Google Scholar 

  11. H. Tran, C. Boulet, S. Stefani, M. Snels, and G. Piccioni, “Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm–1. I—Central and wing regions of the allowed vibrational bands,” J. Quant. Spectrosc. Radiat. Transfer 112 (6), 925–936 (2011).

    Article  ADS  Google Scholar 

  12. R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, “Temperature dependence of the absorption in the region beyond the 4.3 mm band of CO2. I: Pure CO2 case,” Appl. Opt. 24 (6), 897–906 (1985).

    Article  ADS  Google Scholar 

  13. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Profile and Intermolecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].

    MATH  Google Scholar 

  14. Yu. V. Bogdanova and O. B. Rodimova, “Line shape in far wings and water vapor absorption in a broad temperature interval,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2298–2307 (2010).

    Article  ADS  Google Scholar 

  15. T. E. Klemeshina, T. M. Petrova, O. B. Rodimova, A. A. Solodov, and A. M. Solodov, “CO2 absorption in band wings in near IR,” Atmos. Ocean Opt. 28 (5), 387–393 (2015).

    Article  Google Scholar 

  16. D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, and A. Campargue, “The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (II) Self-absorption continuum,” J. Quant. Spectrosc. Radiat. Transfer 187, 38–43 (2017).

    Article  ADS  Google Scholar 

  17. O. B. Rodimova, “Continuum absorption in the carbon dioxide spectrum,” in Proc. XXIII Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2017), p. A89–A92 [in Russian].

    Google Scholar 

  18. L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Radiation Absorption in Rovibrational Molecular Spectra. Calculation Tecnique and Its Application to SO2, Available from VINITI, No. 6367–83 (1983).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. B. Rodimova.

Additional information

Original Russian Text © O.B. Rodimova, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodimova, O.B. Carbon Dioxide and Water Vapor Continuum Absorption in the Infrared Spectral Region. Atmos Ocean Opt 31, 564–569 (2018). https://doi.org/10.1134/S1024856018060143

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856018060143

Keywords