Atmospheric and Oceanic Optics

, Volume 31, Issue 6, pp 564–569 | Cite as

Carbon Dioxide and Water Vapor Continuum Absorption in the Infrared Spectral Region

  • O. B. RodimovaEmail author
Spectroscopy of Ambient Medium


Н2О and СО2 continuum absorption within the IR absorption bands depends on the frequency boundaries within which the local line contribution is accounted for. Correlation between the maximal value of this boundary and the line shape at large frequency detuning is observed for the 4.3-, 2.7-, 1.4-, and 1.2-μm СО2 bands, as well as for rotational and 1400–1900-, 3500–3900-, and 5200–5500-cm−1 Н2О bands. The continuum absorption can be unambiguously determined from measurements in the band wings if one assumes that it is purely continual there. Within bands, the continuum absorption cannot be determined unambiguously and depends on the local line contribution boundary chosen.


carbon dioxide continuum absorption spectral line wings 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res 23 (3-4), 229–241 (1989).Google Scholar
  2. 2.
    T. E. Klimeshina and O. B. Rodimova, “Continuum absorption in the 4.3-μm CO2 band,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 92920H (2014).Google Scholar
  3. 3.
    B. H. Winters, S. J. Silverman, and W. S. Benedict, “Line shape in the wing beyond the band head of the 4.3-μm band of CO2,” J. Quant. Spectrosc. Radiat. Transfer 135 (4), 527–537 (1964).CrossRefGoogle Scholar
  4. 4.
    D. E. Burch, D. A. Gryvnak, R. R. Patty, and Ch. E. Bartky, “Absorption of infrared radiant energy by CO2 and H2O. IV. Shapes of collision-broadened CO2 lines,” J. Opt. Soc. Am. 59 (3), 267–280 (1969).ADSCrossRefGoogle Scholar
  5. 5.
    D. E. Burch and D. A. Gryvnak, “Absorption of infrared radiant energy by CO2 and H2O. V. Absorption by CO2 between 1100 and 1835 cm–1 (9.1–5.5 μm),” J. Opt. Soc. Am. 61 (4), 499–503 (1971).ADSCrossRefGoogle Scholar
  6. 6.
    M. O. Bulanin, V. P. Bulychev, P. V. Granskii, A. P. Kouzov, and M. V. Tonkov, “Study of absorption functions of SO2 near 4.3 and 15-μm bands,” in Problems of Atmospheric Physics (Izd. LGU, Leningrad, 1976), Is. 13, p. 14–24 [in Russian].Google Scholar
  7. 7.
    M. O. Bulanin, A. B. Dokuchaev, M. V. Tonkov, and N. N. Filipov, “Influence of the line interference on the vibratio-rotation band shapes,” J. Quant. Spectrosc. Radiat. Transfer 31 (6), 521–543 (1984).ADSCrossRefGoogle Scholar
  8. 8.
    C. Cousin, R. LeDoucen, C. Boulet, A. Henry, and D. Robert, “Line coupling in the temperature and fre-quency dependence of absorption in the microwindows of the 4.3-μm CO2 band,” J. Quant. Spectrosc. Radiat. Transfer 36 (6), 521–538 (1986).ADSCrossRefGoogle Scholar
  9. 9.
    J. M. Hartmann and M. Y. Perrin, “Measurements of pure CO2 absorption beyond the ν3 band at high temperatures,” Appl. Opt. 28 (13), 2550–2553 (1989).ADSCrossRefGoogle Scholar
  10. 10.
    J. Boissoles, V. Menoux, R. Le Doucen, C. Boulet, and D. Robert, “Collisionally induced population transfer effect in infrared absorption spectra. III. Temperature dependence of absorption in the aIr-broadened wing of CO2 ν3 band,” J. Chem. Phys. 93 (4), 2217–2221 (1990).ADSCrossRefGoogle Scholar
  11. 11.
    H. Tran, C. Boulet, S. Stefani, M. Snels, and G. Piccioni, “Measurements and modelling of high pressure pure CO2 spectra from 750 to 8500 cm–1. I—Central and wing regions of the allowed vibrational bands,” J. Quant. Spectrosc. Radiat. Transfer 112 (6), 925–936 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    R. Le Doucen, C. Cousin, C. Boulet, and A. Henry, “Temperature dependence of the absorption in the region beyond the 4.3 mm band of CO2. I: Pure CO2 case,” Appl. Opt. 24 (6), 897–906 (1985).ADSCrossRefGoogle Scholar
  13. 13.
    L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Profile and Intermolecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].zbMATHGoogle Scholar
  14. 14.
    Yu. V. Bogdanova and O. B. Rodimova, “Line shape in far wings and water vapor absorption in a broad temperature interval,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2298–2307 (2010).ADSCrossRefGoogle Scholar
  15. 15.
    T. E. Klemeshina, T. M. Petrova, O. B. Rodimova, A. A. Solodov, and A. M. Solodov, “CO2 absorption in band wings in near IR,” Atmos. Ocean Opt. 28 (5), 387–393 (2015).CrossRefGoogle Scholar
  16. 16.
    D. Mondelain, S. Vasilchenko, P. Cermak, S. Kassi, and A. Campargue, “The CO2 absorption spectrum in the 2.3 μm transparency window by high sensitivity CRDS: (II) Self-absorption continuum,” J. Quant. Spectrosc. Radiat. Transfer 187, 38–43 (2017).ADSCrossRefGoogle Scholar
  17. 17.
    O. B. Rodimova, “Continuum absorption in the carbon dioxide spectrum,” in Proc. XXIII Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2017), p. A89–A92 [in Russian].Google Scholar
  18. 18.
    L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Radiation Absorption in Rovibrational Molecular Spectra. Calculation Tecnique and Its Application to SO2, Available from VINITI, No. 6367–83 (1983).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations