Skip to main content

Numerical Investigation of the Direct Variational Algorithm of Data Assimilation in the Urban Scenario

Abstract

The performance of a direct variational data assimilation algorithm with quasi-independent data assimilation at individual steps of the splitting scheme has been studied in a realistic scenario of air pollution assessment in the city of Novosibirsk by monitoring system data. For operation under conditions of a sparse monitoring network, an algorithm with minimization of the spatial derivative of the uncertainty (control) function adjusted to data assimilation is proposed. The use of the spatial derivative minimization increases the smoothness of the uncertainty (control functions) reconstructed, which has a positive effect on the reconstruction quality in the scenario considered.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Air Quality Guidelines Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide and Sulfur Dioxide (A EURO Publication) (WHO, Regional Office for Europe, Denmark, Copenhagen, 2006).

  2. 2.

    V. V. Penenko, A. E. Aloyan, N. M. Bazhin, and G. I. Skubnevskaya, “Numerical model for hydrometeorological comditions and pollution of cities and industrial regions,” Meteorol. Gidrol., No. 4, 5–15 (1984).

    Google Scholar 

  3. 3.

    M. Bocquet, H. Elbern, H. Eskes, M. Hirtl, R. Zabkar, G. R. Carmichael, J. Flemming, A. Inness, M. Pagowski, J. L. Perez Camano, P. E. Saide, JoseR. San, M. Sofiev, J. Vira, A. Baklanov, C. Carnevale, G. Grell, and C. Seigneur, “Data assimilation in atmospheric chemistry models: Current status and future prospects for coupled chemistry meteorology models,” Atmos. Chem. Phys. 14, 32233–32323 (2014).

    Article  Google Scholar 

  4. 4.

    A. V. Penenko and V. V. Penenko, “Direct data assimilation method for convectiondiffusion models based on splitting scheme,” Vychisl. Tekhnol. 19 (4), 69–83 (2014).

    MATH  Google Scholar 

  5. 5.

    A. V. Penenko, V. V. Penenko, and E. A. Tsvetova, “Sequential data assimilation algorithms for air quality monitoring models based on a weak-constraint variational principle,” Numer. Anal. Appl. 9, 312–325 (2016).

    MathSciNet  Article  MATH  Google Scholar 

  6. 6.

    V. V. Penenko, A. V. Penenko, and E. A. Tsvetova, “Variational approach to the study of processes of geophysical hydro-thermodynamics with assimilation of observation data,” J. Appl. Mech. Tech. Phys. 58, 771–778 (2017).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    A. Penenko, V. Penenko, and Z. Mukatova, “Direct data assimilation algorithms for advection-diffusion models with the increased smoothness of the uncertainty functions,” in 2017 International Multi-Conference on Engineering, Computer and Information Sciences (SIBIRCON), September 18–22, 2017, Novosibirsk, p. 126–130.

    Google Scholar 

  8. 8.

    V. V. Penenko, Numerical Simulation Techniques for Atmospheric Processes (Gidrometeoizdat, Leningrad, 1981) [in Russian].

    Google Scholar 

  9. 9.

    G. I. Marchuk, Simulation in Environmental Problems (Nauka, Moscow, 1982) [in Russian].

    Google Scholar 

  10. 10.

    V. V. Penenko and A. E. Aloyan, Models and Methods for Environmental Safety Problems (Nauka, Novosibirsk, 1985) [in Russian].

    Google Scholar 

  11. 11.

    A. A. Samarskii, Introduction in the Theory of Difference Schemes (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  12. 12.

    D. G. Gordeziani and G. V. Meladze, “Somulation of the third boudary problems for multi-dimensional parabolic equations in an arbitrary region by onedimensional equations,” Zhurn. Vychisl. Matem. Matem. Fiz. 14, 246–250 (1974).

    Google Scholar 

  13. 13.

    W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X. Huang, W. Wang, and J. G. Powers, A Description of the Advanced Research WRF Version 3. NCAR/TN 475 + STR Technical Note, UCAR. http://dx.doi.org/(Cited January 19, 2018). doi 10.5065/D68S4MVH

    Google Scholar 

  14. 14.

    Yandex Static API. https://tech.yandex.ru/maps/doc/staticapi/1.x/dg/concepts/input_params-docpage/(Cited January 19, 2018).

  15. 15.

    http://static-maps.yandex.ru/1.x/?ll=82.920430,55. 030199&spn=0.31457,0.15&l=trf (January 19, 2018).

  16. 16.

    http://www.nso.ru/sites/test.new.nso.ru/wodby_files/files/wiki/2014/01/korrektura_gosdoklad-2015.compressed. pdf (January 19, 2018).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. V. Penenko.

Additional information

Original Russian Text © A.V. Penenko, Zh.S. Mukatova, V.V. Penenko, A.V. Gochakov, P.N. Antokhin, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Penenko, A.V., Mukatova, Z.S., Penenko, V.V. et al. Numerical Investigation of the Direct Variational Algorithm of Data Assimilation in the Urban Scenario. Atmos Ocean Opt 31, 678–684 (2018). https://doi.org/10.1134/S102485601806012X

Download citation

Keywords

  • data assimilation
  • variational approach
  • splitting scheme
  • smart city