Skip to main content

Results of Acoustic Diagnostics of Atmospheric Boundary Layer in Estimation of the Turbulence Effect on Laser Beam Parameters


The coherence length and possible broadening of a laser beam in the atmospheric boundary layer under the effect of random inhomogeneities of the refractive index are estimated from experimental data of remote acoustic sounding. The possibility of significant loss of coherence and noticeable broadening of the laser beam due to turbulence in nighttime are noted.

This is a preview of subscription content, access via your institution.


  1. 1.

    S. V. Asanov, V. V. Belov, A. D. Bulygin, Yu. E. Geints, V. V. Dudorov, A. A. Zemlyanov, A. B. Ignat’ev, F.Yu.Kanev, V. V. Kolosov, P. A. Konyaev, V.P.Lukin, G. G. Matvienko, V. V. Morozov, V. V. Nosov, Yu. N. Ponomarev, I. V. Ptashnik, and M. V. Tarasenkov, “Optical model of the Earth’s atmosphere for intense laser emission in the near and midinfrared spectral ranges,” Opt. Atmos. Okeana 28 (4), 338–345 (2015).

    Google Scholar 

  2. 2.

    S. V. Asanov, Yu. E. Geints, A. A. Zemlyanov, A. B. Ignat’ev, G. G. Matvienko, V. V. Morozov, and A. V. Tarasenkova, “Forecast of intense near-and mid-IR laser radiation propagation along slant atmospheric paths,” Atmos. Ocean. Opt. 29 (4), 315–324 (2016).

    Article  Google Scholar 

  3. 3.

    V. P. Lukin, “Possibilities of aiming optical beams through turbulent atmosphere,” Atmos. Ocean. Opt. 18 (1-2), 66–76 (2005).

    Google Scholar 

  4. 4.

    V. V. Nosov, V. P. Lukin, E. V. Nosov, and A. V. Torgaev, “Method for atmospheric turbulence profile measurement from observation of laser guide stars,” Atmos. Ocean. Opt. 30 (2), 176–183 (2017).

    Article  Google Scholar 

  5. 5.

    V. L. Mironov, Laser Beam Propagation in a Turbulent Atmosphere (Nauka, Novosibirsk, 1981) [in Russian].

    Google Scholar 

  6. 6.

    Laser Beam Propagation in the Atmosphere, Ed. by J. Strohbehn (Springer, Berlin; Heidelberg 1978).

  7. 7.

    V. A. Gladkikh and S. L. Odintsov, “Calibration of Volna-3 sodar,” Atmos. Ocean. Opt. 14 (12), 1050–1053 (2001).

    Google Scholar 

  8. 8.

    A. P. Kamardin and S. L. Odintsov, “Height profiles of the structure characteristic of air temperature in the atmospheric boundary layer from sodar measurements,” Atmos. Ocean. Opt. 30 (1), 33–38 (2017).

    Article  Google Scholar 

  9. 9.

    A. P. Kamardin and S. L. Odintsov, “Method for automatic absolute calibration of sodar measurement channels,” Proc. SPIE 9680, 96805 (2015).

    ADS  Google Scholar 

  10. 10.

    I. V. Nevzorova, S. L. Odintsov, and V. A. Fedorov, “Some methodological aspects of sodar measurements of structural characteristic of temperature pulsation,” in Proc. 10th Int. Symp. on Acoust. Remote Sensing of the Atmosphere and Oceans, 27 November–1 December, 2000, Auckland, New Zealand, p. 312–315.

    Google Scholar 

  11. 11.

    A. P. Kamardin, V. A. Gladkikh, S. L. Odintsov, and V. A. Fedorov, “Doppler meteorological acoustic locator (sodar) "VOLNA-4M-ST”,” Pribory, No. 4, 37–44 (2017).

    Google Scholar 

  12. 12.

    V. A. Gladkikh and A. E. Makienko, “Digital ultrasonic weather station,” Pribory, No. 7, 21–25 (2009).

    Google Scholar 

  13. 13.

    V. A. Gladkikh and S. L. Odintsov, “Profiles of the structure characteristic of temperature in the atmospheric surface layer,” Proc. SPIE 9680, 9680–60 (2015).

    ADS  Google Scholar 

  14. 14.

    V. A. Gladkikh, V. P. Mamyshev, and S. L. Odintsov, “Experimental estimates of the structure parameter of the refractive index for optical waves in the surface air layer,” Atmos. Ocean. Opt. 28 (5), 426–435 (2015).

    Article  Google Scholar 

  15. 15.

    N. N. Botygina, P. G. Kovadlo, E. A. Kopylov, V. P. Lukin, M. V. Tuev, and A. Yu. Shikhovtsev, “Estimation of the astronomical seeing at the Large Solar vacuum telescope site from optical and meteorological measurements,” Atmos. Ocean. Opt. 27 (2), 142–146 (2014).

    Article  Google Scholar 

  16. 16.

    L. V. Antoshkin, N. N. Botygina, L. A. Bolbasova, O. N. Emaleev, P. A. Konyaev, E. A. Kopylov, P.G.Kovadlo, D. Yu. Kolobov, A. V. Kudryashov, V. V. Lavrinov, L. N. Lavrinova, V. P. Lukin, S. A. Chuprakov, A. A. Selin, and A. Yu. Shikhovtsev, “Adaptive optics system for solar telescope operating under strong atmospheric turbulence,” Atmos. Ocean. Opt. 30 (3), 291–299 (2017).

    Article  Google Scholar 

  17. 17.

    P. G. Kovadlo, Doctoral Dissertation in Mathematics and Physics (Irkutsk, 2001).

    Google Scholar 

  18. 18.

    V. P. Lukin, S. P. Ilyasov, V. V. Nosov, S. L. Odintsov, and Yu. A. Tillaev, “The study of astroclimate of the South Siberia and Central Asia regions,” Opt. Atmos. Okeana 22 (10), 973–980 (2009).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to S. L. Odintsov.

Additional information

Original Russian Text © S.L. Odintsov, V.A. Gladkikh, A.P. Kamardin, I.V. Nevzorova, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Odintsov, S.L., Gladkikh, V.A., Kamardin, A.P. et al. Results of Acoustic Diagnostics of Atmospheric Boundary Layer in Estimation of the Turbulence Effect on Laser Beam Parameters. Atmos Ocean Opt 31, 553–563 (2018).

Download citation


  • laser radiation
  • atmospheric boundary layer
  • turbulent distortions
  • propagation
  • sodar
  • structural characteristics of refractive index