Atmospheric and Oceanic Optics

, Volume 31, Issue 6, pp 611–618 | Cite as

Diffraction-Beam Optics of Filamentation: I–Formalism of Diffraction Beams and Light Tubes

  • Yu. E. GeintsEmail author
  • A. A. Zemlyanov
  • O. V. Minina
Nonlinear Optics


The concept of nonstationary diffraction-beam optics of high-power femtosecond laser pulses is presented. According to the concept, the power of a beam propagates along specific light structures—diffraction- beam tubes. These tubes do not intersect and do not exchange energy, but changes in their shape and cross sections during propagation show the effect of physical processes that occur with radiation in the medium. The nonstationary theory is supplemented with evolutionary equations for time-averaged diffraction rays and effective squared radii of diffraction tubes.


femtosecond laser pulses self-focusing filamentation diffraction ray diffraction-beam tube 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Self-focusing: Past and Present. Fundamentals and Prospects, Ed. By R.W. Boyd, S.G. Lukishova, and Y.R. Shen (Springer, Berlin, 2009).Google Scholar
  2. 2.
    S. Tzortzakis, B. Prade, M. Franco, and A. Mysyrowicz, “Time-evolution of the plasma channel at the trail of a self-guided IR femtosecond laser pulse in air,” Opt. Commun. 181, 123–127 (2000).ADSCrossRefGoogle Scholar
  3. 3.
    A. A. Ilyin, S. S. Golik, and K. A. Shmirko, “Absorption and emission characteristics of femtosecond laser plasma filaments in the air,” Spectrochim. Acta 112, 16–22 (2015).CrossRefGoogle Scholar
  4. 4.
    A. Couairon and A. Myzyrowicz, “Femtosecond filamentation in transparent media,” Phys. Rep. 441 (2–4), 47–189 (2007).ADSCrossRefGoogle Scholar
  5. 5.
    S. V. Chekalin and V. P. Kandidov, “From self-focusing light beams to femtosecond laser pulse filamentation,” Phys.-Uspekhi 56 (2), 123–140 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    V. P. Kandidov, O. G. Kosareva, I. S. Golubtsov, W. Liu, A. Becker, N. Akozbek, C. M. Bowden, and S. L. Chin, “Self-transformation of a powerful femtosecond laser pulse into a white-light laser pulse in bulk optical media (or supercontinuum generation),” Appl. Phys. B 77 (2-3), 149–166 (2003).Google Scholar
  7. 7.
    L. Woste, C. Wedekind, H. Wille, P. Rairoux, B. Stein, S. Nikolov, Ch. Werner, S. Niedermeier, H. Schillinger, and R. Sauerbrey, “Femtosecond atmospheric lamp,” Laser Optoelektron. 29, 51–53 (1997).Google Scholar
  8. 8.
    M. Rodriguez, R. Bourayou, G. Mejean, J. Kasparian, J. Salmon, E. Yu, A. Scholz, B. Stecklum, J. Eisloffel, U. Laux, A. P. Hatzes, R. Sauerbrey, L. Woste, and J.-P. Wolf, “Kilometer-range non-linear propagation of femtosecond laser pulses,” Phys. Rev., E 69, 036607 (2004).ADSCrossRefGoogle Scholar
  9. 9.
    R. Ackermann, G. Mechain, G. Mejean, R. Bourayou, M. Rodriguez, K. Stelmaszczyk, J. Kasparian, J. Salmon, E. Yu, S. Tzortzakis, Y.-B. Andre, J.-F.Bourrillon, L. Tamin, J. -P. Cascelli, C. Campo, C. Davoise, A. Mysyrowicz, R. Sauerbrey, L. Woste, and J.-P. Wolf, “Influence of negative leader propagation on the triggering and guiding of high voltage discharges by laser filaments,” Appl. Phys. B 82, 561–566 (2006).ADSCrossRefGoogle Scholar
  10. 10.
    M. Durand, A. Houard, B. Prade, A. Mysyrowicz, A. Durecu, B. Moreau, D. Fleury, O. Vasseur, H. Borchert, K. Diener, R. Schmitt, F. Theberge, M. Chateauneuf, J.-F. Daigle, and J. Dubois, “Kilometer range filamentation,” Opt. Express 21, 26836–26845 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    A. Braun, G. Korn, X. Liu, D. Du, J. Squier, and G. Mourou, “Self-channeling of high-peak-power femtosecond laser pulses in air,” Opt. Lett. 20 (1), 73–75 (1995).ADSCrossRefGoogle Scholar
  12. 12.
    E. T. J. Nibbering, P. F. Curley, G. Grillon, B. S. Prade, M. A. Franco, F. Salin, and A. Mysyrowicz, “Conical emission from self-guided femtosecond pulses in air,” Opt. Lett. 21 (1), 62–64 (1996).ADSCrossRefGoogle Scholar
  13. 13.
    V. N. Lugovoi and A. M. Prokhorov, “A possible explanation of the small-scale self-focusing filaments,” JETP Lett. 7, 117–119 (1968).ADSGoogle Scholar
  14. 14.
    A. Brodeur, C. Y. Chien, F. A. Ilkov, S. L. Chin, O. G. Kosareva, and V. P. Kandidov, “Moving focus in the propagation of ultrashort laser pulses in air,” Opt. Lett. 22 (5), 304–306 (1997).ADSCrossRefGoogle Scholar
  15. 15.
    R. Y. Ciao, E. Garmiere, and C. H. Towens, “Self-trapping of optical beams,” Phys. Rev. Lett. 13, 479–482 (1964).ADSCrossRefGoogle Scholar
  16. 16.
    M. Mlejnek, E. M. Wright, and J. V. Moloney, “Dynamic spatial replenishment of femtosecond pulses propagating in air,” Opt. Lett. 23, 382–384 (1998).ADSCrossRefGoogle Scholar
  17. 17.
    A. Lotti, A. Couairon, D. Faccio, and P. Di Trapani, “Energy-flux characterization of conical and spacetime coupled wave packets,” Phys. Rev., A 81, 023810 (2010).ADSCrossRefGoogle Scholar
  18. 18.
    T. D. Grow, A. A. Ishaaya, L. T. Vuong, A. L. Gaeta, N. Gavish, and G. Fibich, “Collapse dynamics of super-gaussian beams,” Opt. Express. 14, 5468–5475 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    T.-T. Xi, X. Lu, and J. Zhang, “Spatiotemporal moving focus of long femtosecond-laser filaments in air,” Phys. Rev., E 78, 055401 (2008).ADSCrossRefGoogle Scholar
  20. 20.
    A. A. Zemlyanov, A. D. Bulygin, and Yu. E. Geints, “Diffraction optics of a light filament generated during self-focusing of a femtosecond laser pulse in air,” Atmos. Ocean. Opt. 25 (2), 97–105 (2012).CrossRefGoogle Scholar
  21. 21.
    A. A. Zemlyanov, A. D. Bulygin, and Yu. E. Geints, “Energy light structures during femtosecond laser radiation filamentation in air. To the 50th anniversary of the first paper about light self-focusing,” Atmos. Ocean. Opt. 27 (6), 463–475 (2014).CrossRefGoogle Scholar
  22. 22.
    J. B. Keller, “Geometrical theory of diffraction,” J. Opt. Soc. Am. 52 (2), 116–130 (1962).ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    V. I. Talanov, “Self-focusing of wave beams in nonlinear media,” JETP Lett. 2 (5), 138–140 (1965).ADSGoogle Scholar
  24. 24.
    S. G. Rautian, Quasi-beam tubes, Opt. Spektrosk. 87 (3), 494–496 (1999).Google Scholar
  25. 25.
    A. A. Gershun, Selected Papers on Photometry and Lighting Engineering (Fizmatgiz, Moscow, 1958) [in Russian].Google Scholar
  26. 26.
    Yu. E. Geints and A. A. Zemlyanov, “Ring-Gaussian laser pulse filamentation in a self-induced diffraction waveguide,” J. Opt. 19, 105502 (2017).ADSCrossRefGoogle Scholar
  27. 27.
    A. A. Zemlyanov, A. D. Bulygin, Yu. E. Geints, and O. V. Minina, “Dynamics of light structures during filamentationof femtosecond laser pulses in air,” Atmos. Ocean. Opt. 29 (5), 395–404 (2016).CrossRefGoogle Scholar
  28. 28.
    A. E. Siegman, Defining and Measuring Laser Beam Quality, Solid State Lasers: New Developments and Applications (Plenum Press, New York, 1994).Google Scholar
  29. 29.
    Yu. E. Geints and A. A. Zemlyanov, “On the focusing limit of high-power femtosecond laser pulse propagation in air,” Eur. Phys. J. D 55, 745–754 (2009).ADSCrossRefGoogle Scholar
  30. 30.
    Optical waves and laser beams in the irregular atmosphere, Ed. By N. Blaunstein, N. Kopeika (CRC Press, New York, 2018).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. E. Geints
    • 1
    Email author
  • A. A. Zemlyanov
    • 1
  • O. V. Minina
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations