Skip to main content

Optoelectronic UV Communication on Scattered Laser Radiation

Abstract

Previous and new results on the problems of optical communication in scattered laser radiation in the UV wavelength range, obtained at the Institute of Atmospheric Optics, Siberian Branch, Russian Academy of Sciences, are discussed. Field experiments on optoelectronic communication in night- and daytime conditions in 2017 and 2018 are presented.

This is a preview of subscription content, access via your institution.

References

  1. H. Yin, S. Chang, H. Jia, Ji. Yang, and Ju. Yang, “Nonlineof-sight multiscatter propagation model,” J. Opt. Soc. Am., A 26 (11), 2466–2469 (2009).

    ADS  Article  Google Scholar 

  2. H. Ding, G. Chen, A. K. Majumdar, B. M. Sadler, and Z. Xu, “Modeling of non-line-of-sight ultraviolet scattering channels for communication,” IEEE J. Sel. Areas Commun. 27 (9), 1535–1544 (2009).

    Article  Google Scholar 

  3. H. Yin, H. Jia, H. Zhang, X. Wang, S. Chang, and J. Yang, “Vectorized polarization-sensitive model of non-line-of-sight multiple-scatter propagation,” J. Opt. Soc. Am., A 28 (10), 2082–2085 (2011).

    ADS  Article  Google Scholar 

  4. D. Han, X. Fan, K. Zhang, and R. Zhu, “Research on multiple-scattering channel with Monte Carlo model in UV atmosphere communication,” Appl. Opt. 52 (22), 5516–5522 (2013).

    ADS  Article  Google Scholar 

  5. H. Xiao, Y. Zuo, J. Wu, Y. Li, and J. Lin, “Non-lineof-sight ultraviolet single-scatter propagation model in random turbulent medium,” Opt. Lett. 38 (17), 3366–3369 (2013).

    ADS  Article  Google Scholar 

  6. V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, V. V. Ivanov, A. V. Fedosov, V. O. Troitskii, and D. V. Shiyanov, “Atmospheric bistatic communication channels with scattering. Part 1. Methods of study,” Atmos. Ocean. Opt. 26 (5), 364–370 (2013).

    Article  Google Scholar 

  7. V. K. Jagadeesh, Arpita. Choudhary, Fr. M. Bui, and P. Muthuchidambaranathan, “Characterization of channel impulse responses for NLOS Underwater wireless optical communications,” in Conf. Advances in Computing and Communications (ICACC), August 27–29, 2014, Cochin (IEEE, 2014), p. 77–79.

    Google Scholar 

  8. Arpita Choudhary, V. K. Jagadeesh, and P. Muthuchidambaranathan, “Pathloss analysis of NLOS underwater wireless optical communication channel,” in Int. Conf. “Electronics and Communication Systems (ICECS)”, February 13–14, 2014, Coimbatore (IEEE, 2014), p. 1–4.

    Google Scholar 

  9. C. Gabriel, M. Khalighi, S. Bourennane, P. Leon, and V. Rigaud, “Monte-Carlo-based channel characterization for underwater optical communication systems,” J. Opt. Commun. Netw. 5 (1), 1–12 (2013).

    Article  Google Scholar 

  10. S. Arnon and D. Kedar, “Non-line-of-sight underwater optical wireless communication network,” J. Opt. Soc. Am., A 26 (3), 530–539 (2009).

    ADS  Article  Google Scholar 

  11. H. Yin, S. Chang, X. Wang, Ji. Yang, Ju. Yang, and J. Tan, “Analytical model of non-line-of-sight singlescatter propagation,” J. Opt. Soc. Am., A 27 (7), 1505–1509 (2010).

    ADS  Article  Google Scholar 

  12. M. A. Elshimy and S. Hranilovic, “Non-line-of-sight single-scatter propagation model for noncoplanar geometries,” J. Opt. Soc. Am., A 28 (3), 420–428 (2011).

    ADS  Article  Google Scholar 

  13. V.N. Pozhidaev, “Implementability of UV communication lines based on the effects of molecular and aerosol scattering in the atmosphere,” Radiotekh. Elektron. 22 (10), 2190–2192 (1977).

    ADS  Google Scholar 

  14. G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and V. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  15. E. G. Kablukova and B. A. Kargin, “Effective discreteatikhastic modifications of local Monte Carlo estimates for priblems of laser sounding of scattering media,” Vychisl. Tekhnol. 17 (3), 70–82 (2012).

    Google Scholar 

  16. G. Z. Lotova, “Modification of the double local estimate of the Monte Carlo Method in radiation transfer theory,” Russ. J. Num. Analysis Math. Modeling 26 (5), 491–500 (2011).

    MathSciNet  MATH  Google Scholar 

  17. G. A. Mikhailov and G. Z. Lotova, “Numerical-statistical estimate of the particle flux with a finite dispersion,” Dokl. Akad. Nauk 447 (1), 18–21 (2012).

    Google Scholar 

  18. V. V. Belov and M. V. Tarasenkov, “Three algorithms of statistical modeling of optical communication on scattered and bistatic sensing,” Atmos. Ocean. Opt. 29 (6), 533–540 (2016).

    Article  Google Scholar 

  19. V. V. Belov and M. V. Tarasenkov, “Algorithms of statistical modeling of optical communication of pulse bistatic connumication channels,” in Proc. of Int. Conf. “Urgent Problems of Computational and Applied Mathemetic-2015,” Devoted to the 90th Anniversary of G.I. Marchuk, Institute of Computational Mathematics and Mathmatical Geophysicas SB RAS, October 19–23 2015 (Abvei, Novosibirsk, 2015), p. 95–101 [in Russian].

    Google Scholar 

  20. V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, V. V. Ivanov, A. V. Fedosov, Yu. V. Gridnev, V. O. Troitskii, and V. A. Dimaki, “Atmospheric bistatic communication channels with scattering. Part 2. Field experiments in 2013,” Atmos. Oceanic Opt. 28 (3), 202–208 (2015).

    Article  Google Scholar 

  21. V. V. Belov, M. V. Tarasenkov, V. N. Abramochkin, and V. O. Troitskii, “Over-the-horizon optoelectronic communication systems,” Russ. Phys. J. 57 (7), 202–208 (2014).

    Article  Google Scholar 

  22. V. V. Belov, M. V. Tarasenkov, and V. N. Abramochkin, “Bistatic atmospheric optoelectronic communication systems (field experiments),” Tech. Phys. Lett. 40 (10), 871–874 (2014).

    ADS  Article  Google Scholar 

  23. V. V. Belov, “Optical communication on scattered laser radiation,” Proc. SPIE—Int. Soc. Opt. Eng. 10466, CID: 10466 0H, [10466-24] (2017).

    Google Scholar 

  24. V. V. Belov, V. N. Abramochkin, Yu. V. Gridnev, A. N. Kudryavtsev, S. P. Kulaev, M. V. Tarasenkov, V. O. Troitskii, and A. V. Fedosov, “Bistatic optoelectronic communication systems: Field experiments in artificial and natural water reservoirs,” Atmos. Oceanic Opt. 30 (4), 366–371 (2017).

    Article  Google Scholar 

  25. V. N. Abramochkin, V. V. Belov, Yu. V. Gridnev, A. N. Kudryavtsev, M. V. Tarasenkov, and A. V. Fedosov, “Optoelectronic communication in the atmosphere using diffuse laser radiation: Experiments in the field,” Light Eng. 25 (4), 41–49 (2017).

    Google Scholar 

  26. M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, D. A. Pestunov, E. V. Pokrovskii, G. N. Tolmachev, and A. V. Fofonov, “Sites for monitoring of greenhouse gases and gases oxidizing the atmosphere,” Atmos. Ocean. Opt. 20 (1). 45–53 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Belov.

Additional information

Original Russian Text © V.V. Belov, Yu.V. Gridnev, A.N. Kudryavtsev, M.V. Tarasenkov, A.V. Fedosov, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belov, V.V., Gridnev, Y.V., Kudryavtsev, A.N. et al. Optoelectronic UV Communication on Scattered Laser Radiation. Atmos Ocean Opt 31, 698–701 (2018). https://doi.org/10.1134/S1024856018060040

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856018060040

Keywords

  • laser radiation scattering
  • field experiments
  • optical communication