Skip to main content
Log in

Comparison of Distributions of Atmospheric Gas Admixture Concentrations Measured by Remote and In Situ Instruments over the Russian Sector of the Arctic

  • Inverse Problems of Atmospheric and Ocean Optics
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Data from aircraft and satellite sensing at the ocean–land boundary in the region of the Kara Sea in October 2014 are compared, using 11 and 7 profiles, which were synchronously measured over a continental part and ocean, respectively. It was found that the satellite usually overestimates the CH4 and CO2 concentrations in the 0–8-km layer over the continental part of the Arctic region and underestimates them over the ocean. Over continent, the satellite overestimates the methane concentrations by 28 ppb in the boundary layer and by much more in the middle (182 ppb) and upper (113 ppb) troposphere. Over ocean, the satellite measurements are, on average, lower by 37 ppb in the boundary layer, by 73 ppb in the middle troposphere, and by 71 ppb in the upper troposphere. Over continent, the discrepancy in CO2 concentrations, measured with different instruments, is, on average, 18.2 ppm in the boundary layer and can vary from 3.2 to 26.5 ppm. In the middle troposphere (4 km), the average differences decrease to 10.8 ppm, with the range of differences even increasing somewhat, to 0.6–25.5 ppm. In the upper troposphere (8 km), the average difference in measurements between the instruments decreases to 2.8 ppm. The underestimation turns out to be greater in amplitude over the ocean. It is noteworthy that the comparison yielded acceptable results for CO and O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. G. Shepherd, “Effects of a warming Arctic,” Science 353 (6303), 989–990 (2016).

    Article  ADS  Google Scholar 

  2. O. M. Johannessen, S. I. Kuzmina, L. P. Bobylev, and M. W. Miles, “Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalisation,” Tellus A 68, 28234 (2016).

    Article  ADS  Google Scholar 

  3. S. R. Arnold, K. S. Law, C. A. Brock, J. L. Thomas, S. M. Starkweather, K. Salzen, A. Stohl, S. Sharma, M. T. Lund, M. G. Flanner, T. Petaja, H. Tanimoto, J. Gamble, J. E. Dibb, M. Melamed, N. Johnson, M. Fider, V.-P. Tynkkynen, A. Baklanov, S. Eckhardt, S. A. Monks, J. Browse, and H. Bozem, “Arctic air pollution: Challenges and opportunities for the next decade,” Elementa: Sci. Atmos., No. 4, 16 (2016).

    Google Scholar 

  4. N. Evangeliou, Y. Balkanski, W. M. Hao, A. Petkov, R. P. Silverstein, R. Corley, B. L. Nordgren, S. P. Urbanski, S. Eckhardt, A. Stohl, P. Tunved, S. Crepinsek, A. Jefferson, S. Sharma, J. K. Njgaard, and H. Skov, “Wildfires in northern Eurasia affect the budget of black carbon in the Arctic—a 12-year retrospective synopsis (2002–2013),” Atmos. Chem. Phys. 16 (12), 7587–7604 (2016).

    Article  ADS  Google Scholar 

  5. A. P. Nagurnyi, “Analysis of measurement data on carbon dioxide concentration in the near-ice surface atmosphere at North Pole-35 drifting ice station (2007–2008),” Rus. Meteorol. Hydrol. 35 (9), 619–623, 2010.

    Google Scholar 

  6. A. P. Nagurnyi and A. P. Makshtas, “Methane concentration in the atmospheric boundary layer from the measurements at North Pole-36 and North Pole-39 drifting ice stations,” Rus. Meteorol. Hydrol. 41 (3), 199–204 (2016).

    Article  Google Scholar 

  7. I. I. Pipko, S. P. Pugach, and I. P. Semiletov, “CO2 dynamics on the shelf of the East Siberian Sea,” Rus. Meteorol. Hydrol. 35 (9), 624–632 (2010).

    Article  Google Scholar 

  8. I. P. Semiletov, N. E. Shakhova, I. I. Pipko, S. P. Pugach, A. N. Charkin, O. V. Dudarev, D. A. Kosmach, and S. Nishino, “Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacebt part of Laptev Sea,” Biogeosci. 10 (9), 5977–5996 (2013).

    Article  ADS  Google Scholar 

  9. J. Yu, Z. Xie, L. Sun, H. Kang, P. He, and G. Xing, “δ13C–CH4 reveals CH4 variations over oceans from mid-latitudes to the Arctic,” Sci. Rep. 5 (13760) (2015).

    Google Scholar 

  10. M. Giamarelou, K. Eleftheriadis, S. Nyeki, K. Torseth, and G. Biskos, “Indirect evidence of the composition of nucleation mode atmospheric particles in the high Arctic,” J. Geophys. Res.: Atmos. 121 (2), 965–975 (2016).

    ADS  Google Scholar 

  11. C. L. Myhre, B. Ferre, M. Platt, A. Silyakova, O. Hermansen, G. Allen, I. Pisso, N. Schmidbauer, A. Stohl, J. Pitt, P. Jansson, J. Greinert, C. Percival, A. M. Fjaeraa, O’Shea, M. Gallagher, M. L. Breton, K. N. Bower, S. J. B. Bauguitte, S. Dalsoren, S. Vadakkepuliyambatta, R. E. Fisher, E. G. Nisbet, D. Lowry, G. Myhre, J. A. Pyle, M. Cain, and J. Mienert, “Extensive release of methane from Arctic seabed west of Svalbard during summer 2014,” Geophys. Res. Lett. 43 (9), 4624–4631 (2016).

    Article  ADS  Google Scholar 

  12. B. Quennehen, A. Schwarzenboeck, J. Schmale, J. Schneider, H. Sodemann, A. Stohl, G. Ancellet, S. Crumeyrolle, and K. S. Law, “Physical properties of pollution aerosol particles transported from North America to Greenland as measured during the POLARCAT summer campaign,” Atmos. Chem. Phys. 11 (21), 10 947–10 963 (2011).

    Google Scholar 

  13. C. D. Zwaaftink, H. Grythe, H. Skov, and A. Stohl, “Substantial contribution of northern high-latitude sources to mineral dust in the Arctic,” J. Geophys. Res.: Atmos. 121 (23), 13678–13697 (2016).

    ADS  Google Scholar 

  14. J. P. Burrows and R. Martin, “Satellite observations of tropospheric trace gases and aerosols. Introduction,” IGAC Newslett., No. 35, 2–7 (2007).

    Google Scholar 

  15. J. Tollefson, “Carbon-sensing satellite system faces high hurdles,” Nature (Gr. Brit.) 533 (7604), 446–447 (2016).

    Article  ADS  Google Scholar 

  16. G. Popkin, “Commercial space sensors go high-tech,” Nature (Gr. Brit.) 545 (7655), 397–398 (2017).

    Article  ADS  Google Scholar 

  17. L. Costantino, J. Cuesta, E. Emili, A. Coman, G. Foret, G. Dufour, M. Eremenko, Y. Chailleux, M. Beekmann, and J.-M. Flaud, “Potential of multispectral synergism for observing ozone pollution by combining IASI-NG and UVNS measurements from the EPS-SG satellite,” Atmos. Meas. Tech. 10 (4), 1281–1298 (2017).

    Article  Google Scholar 

  18. R. Dupont, B. Pierce, J. Worden, J. Hair, M. Fenn, P.Hamer, M. Natarajan, T. Schaack, A. Lenzen, E. Apel, J. Dibb, G. Diskin, G. Huey, A. Weinheimer, Y. Kondo, and D. Knapp, “Attribution and evolution of ozone from Asian wild fires using satellite and aircraft measurements during the ARCTAS campaign,” Atmos. Chem. Phys. 12 (1), 169–188 (2012).

    Article  ADS  Google Scholar 

  19. T. Tanaka, Y. Miyamoto, I. Morino, T. Machida, T. Nagahama, Y. Sawa, H. Matsueda, D. Wunch, S. Kawakami, and O. Uchino, “Aircraft measurements of carbon dioxide and methane for the calibration of ground-based high-resolution Fourier Transform,” Atmos. Meas. Tech. 5 (8), 2003–2012 (2012).

    Article  Google Scholar 

  20. M. Inoue, I. Morino, O. Uchino, Y. Miyamoto, T. Saeki, Y. Yoshida, T. Yokota, C. Sweeney, P. P. Tans, S. C. Biraud, T. Machida, J. V. Pittman, E. A. Kort, T. Tanaka, S. Kawakami, Y. Sawa, K. Tsuboi, and H. Matsueda, “Validation of XCH4 derived from SWIR spectra of GOSAT,” Atmos. Meas. Tech. 7 (9), 2987–3005 (2014).

    Article  Google Scholar 

  21. A. T. J. De Laat, I. Aben, M. Deeter, P. Nedelec, H. Eskes, J.-L. Attie, P. Ricaud, R. Abida, L. E. Amraoui, and J. Landgraf, “Validation of nine years of MOPITT V5 NIR using MOZAIC/IAGOS measurements: Biases and long-term stability,” Atmos. Meas. Tech. 7 (11), 3783–3799 (2014).

    Article  Google Scholar 

  22. H. S. Marey, Z. Hashisho, L. Fu, and J. Gille, “Spatial and temporal variation in CO over Alberta using measurements from satellites, aircraft, and ground stations,” Atmos. Chem. Phys. 15 (7), 3893–3908 (2015).

    Article  ADS  Google Scholar 

  23. O. Yu. Antokhina, P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, Ph. Nedelec, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Vertical distributions of gaseous and aerosol admixtures in air over the Russian Arctic,” Atmos. Ocean. Opt. 31 (3), 300–310 (2018).

    Article  Google Scholar 

  24. T. August, D. Klaer, P. Schlussel, T. Hultberg, M. Crapeau, A. Arriga, A. O. Carroll, D. Coppens, R. Munro, and X. Calbet, “IASI on Metop-A: Operational Level 2 retrievals,”. Quant. Spectrosc. Radiat. Transfer 113 (4), 1340–1371 (2012).

    Article  ADS  Google Scholar 

  25. C. Crevoisier, A. Chedin, H. Matsueda, T. Machida, R. Armante, and N. A. Scott, “First year of upper tropospheric integrated content of CO2 from IASI hyperspectral infrared observations,” Atmos. Chem. Phys. 9 (14), 4797–4810 (2009).

    Article  ADS  Google Scholar 

  26. C. Crevoisier, C. Clerbaux, V. Guidard, T. Phulpin, R. Armante, B. Barret, C. Camy-Peyret, J.-P. Chaboureau, P.-F. Coheur, L. Crepeau, G. Dufour, L. Labonnote, L. Lavanant, J. Hadji-Lazaro, and H. Herbin, “Towards IASI-New Generation (IASING): Impact of improved spectral resolution and radiometric noise on the retrieval of thermodynamic, chemistry and climate variables,” Atmos. Meas. Tech. 7 (12), 4367–4385 (2014).

    Article  Google Scholar 

  27. M. Yu. Arshinov, S. V. Afonin, B. D. Belan, V. V. Belov, Yu. V. Gridnev, D. K. Davydov, T. Machida, F. Nedelek, Zh.-D. Parizh, and A. V. Fofonov, “Comparison of satellite and aircraft measurements of gas composition in troposphere above the South of West Siberia,” Opt. Atmos. Okeana. 26 (9) 773–782 (2013).

    Google Scholar 

  28. M. Yu. Arshinov, S. V. Afonin, B. D. Belan, V. V. Belov, Yu. V. Gridnev, D. K. Davydov, T. Machida, F. Nedelek, Zh.-D. Parizh, and A. V. Fofonov, “Comparison of satellite and aircraft measurements of gas composition in troposphere above Siberia in the period of wild fires of 2012,” Issled. Zemli Kosmosa, No. 1, 72–84 (2014).

    Google Scholar 

  29. C. Crevoisier, D. Nobileau, R. Armante, L. Crepeau, T. Machida, Y. Sawa, H. Matsueda, T. Schuck, T. Thonat, J. Pernin, N. A. Scott, and A. Chedin, “The 2007–2011 evolution of tropical methane in the mid-troposphere as seen from spase by MetOp-A/IASI,” Atmos. Chem. Phys. 13 (8), 4279–4289 (2013).

    Article  ADS  Google Scholar 

  30. X. Xiong, C. Barnet, E. S. Maddy, A. Cambacorta, T. S. King, and S. C. Wofsy, “Mid-upper tropospheric methane retrieval from IASI and its validation,” Atmos. Meas. Tech. 6 (9), 2255–2265 (2013).

    Article  Google Scholar 

  31. L. N. Yurganov and A. Leifer, “Estimates of methane emission rates from some Arctic and sub-Arctic areas based on orbital interferometer IASI data,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 13 (3), 173–183 (2016).

    Article  Google Scholar 

  32. L. N. Yurganov, A. Leifer, and Mair K. Lund, “Seasonal and interannual variability of atmospheric methane over Arctic Ocean from satellite data,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 13 (2), 107–119 (2016).

    Article  Google Scholar 

  33. A. V. Kukharskii and F. B. Uspenskii, “Monitoring of carbon dioxide mean tropospheric concentration over Siberian ecosystems from satellite-based high-resolution infrared sounders data,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli Kosmosa 7 (4), 204–210 (2010).

    Google Scholar 

  34. A. V. Kukharskii and F. B. Uspenskii, “Determination of tropospheric mean carbon dioxide concentration from satellite high spectral resolution IR-sounder data,” Rus. Meteor. Hydrol. 34 (4), 202–211 (2009).

    Article  Google Scholar 

  35. A. B. Uspenskii, A. V. Kukharskii, S. V. Romanov, and A. N. Rublev, “Monitoring of CO2 concentrations an the total methane in the troposphere above Siberia by IT sounding data from AIRS and IASI satellites,” Issled. Zemli i kosmosa, No. 1, 14–21 (2011).

    Google Scholar 

  36. A. M. Michalak, L. M. P. Bruhwiler, and P. P. Tans, “A geostatistical approach to surface flux estimation of atmospheric trace gases,” J. Geophys. Res. 109 (D14), D14109 (2004). doi 10.1029/2003JD004422

    Google Scholar 

  37. E. D. De Wachter, B. Barret, E. L. Flochmoen, E. Pavelin, M. Matricardi, C. Clerbaux, J. Hadji-Lazaro, M. George, D. Hurtmans, P. F. Coheur, P. Nedelec, and J. P. Cammas, “Retrieval of MetOp-A/IASI CO profiles and vilidation with MOZAIC,” Atmos. Meas. Tech. 5 (11), 2843–2857 (2012).

    Article  Google Scholar 

  38. A. Boynard, C. Clerbaux, L. Clarisse, S. Safieddine, M. Pommier, M. V. Damme, S. Bauduin, C. Oudot, and J. H. Lazaro, “First simultaneous space measurements of atmospheric pollutants in the boundary,” Geophys. Res. Lett. 41 (2), 645–651 (2014).

    Article  ADS  Google Scholar 

  39. O. E. Carcia, E. Sepulveda, M. Schneider, F. Hase, T. August, T. Blumenstock, R. Munro, A. J. Comez-Pelaez, T. Hultberg, A. Redondas, S. Barthlott, A. Wiegele, Y. Gonzalez, and E. Sanroma, “Consistency and quality assessment of the Metop-A/IASI and Metop-/IASI operational trace gas products (O3, CO, N2O, CY4, and CO2) in the subtropical North Atlantic,” Atmos. Meas. Tech. 9 (5), 2315–2333 (2016).

    Article  Google Scholar 

  40. J. Cuesta, M. Eremenko, X. Liu, G. Dufour, Z. Cai, M. Horfner, T. Clarmann, P. Sellito, G. Foret, B. Gaubert, M. Beekmann, J. Orphal, K. Chance, R. Spurr, and J.-M. Flaud, “Satellite observation of lowermost tropospheric ozone by multispectral synergism of IASI thermal infrared and GOME-2 ultraviolet measurements over Europe,” Atmos. Chem. Phys. 13 (13), 9675–9693 (2013).

    Article  ADS  Google Scholar 

  41. S. Safieddine, C. Clerbaux, M. George, J. Hadji-Lazaro, D. Hurtmans, P.-F. Coheur, C. Wespes, D. Loyola, P. Valks, and N. Hao, “Tropospheric ozone and nitrogen dioxide measurements in urban and rural regions as seen by IASI and GOME-2,” J. Geophys. Res.: Atmos. 118 (18), 10555–10566 (2013).

    ADS  Google Scholar 

  42. H. Oetjen, V. H. Payne, S. S. Kulawik, A. Eldering, J. Worden, D. P. Edwards, G. L. Francis, H. M. Worden, C. Clerbaux, J. H. Lazaro, and D. Hurtmans, “Extending the satellite data record of tropospheric ozone profiles from Aura-TES to MetOp-IASI: Characterisation of optimal estimation retrievals,” Atmos. Meas. Tech. 7 (12), 4223–4236 (2014).

    Article  Google Scholar 

  43. N. Smith, Sr. W. L. Smith, E. Weisz, and H. E. Revercomb, “AIRS, IASI, and CrIS retrieval records at climate scales: An investigation into the propagation of systematic uncertainty,” J. Appl. Meteorol. Climatol. 54 (7), 1465–1481 (2015).

    Article  ADS  Google Scholar 

  44. A. Boynard, D. Hurtmans, M. E. Koukoli, F. Goutail, J. Bureau, S. Safieddine, C. Lerot, J. Hadji-Lazaro, C. Wespes, J. P. Pommereau, A. Pazmino, I. Zyrichidou, D. Balis, A. Barbe, S. N. Mikhailenko, D. Loyola, P. Valks, M. V. Roozendael, P. F. Coheur, and C. Clerbaux, “Seven years of IASI ozone retrievals from FORLI: Validation with independent total column and vertical profile measurements,” Atmos. Meas. Tech. 9 (9), 4327–4353 (2016).

    Article  Google Scholar 

  45. C. Wespes, D. Hurtmans, C. Clerbaux, and P.-F. Coheur, “O3 variability in the troposphere as observed by IASI over 2008–2016: Contribution of atmospheric chemistry and dynamics,” J. Geophys. Res.: Atmos. 122 (4), 2429–2451 (2017).

    ADS  Google Scholar 

  46. C. Wespes, L. Emmons, D. P. Edwards, J. Hannigan, D. Hurtmans, M. Saunois, P. -F. Coheur, C. Clerbaux, M. T. Coffey, R. L. Batchelor, R. Lindenmaier, K. Strong, A. J. Weinheimer, J. B. Nowak, T. B. Ryerson, J. D. Crounse, and P. O. Wennberg, “Analysis of ozone and nitric in spring and summer Arctic pollution using aircrat, ground-based, satellite observations and MOZART-4 model: Source attribution and partitioning,” Atmos. Chem. Phys. 12 (1), 237–259 (2012).

    Article  ADS  Google Scholar 

  47. M. Pommier, C. Clerbaux, K. S. Law, G. Ancellet, P. Bernath, P.-F. Coheur, J. Hadji-Lazaro, D. Hurtmans, P. Nedelec, F. Ravett, T. B. Ryerson, H. Schlager, and A. J. Weinheimer, “Analysis of IASI tropospheric O3 data over the Arctic during POLARCAT campaigns in 2008,” Atmos. Chem. Phys. 12 (16), 7371–7389 (2012).

    Article  ADS  Google Scholar 

  48. J. Gazeaux, C. Clerbaux, M. George, J. Hadji-Lazaro, J. Kuttippurath, P. -F. Coheur, D. Hurtmans, T. Deshler, M. Kovilakam, P. Campbell, V. Guidard, F. Rabier, and J.-N. Thepaut, “Intercomparison of polar ozone profiles by IASI/MetOp sounder with 2010 Concordiasi ozonesonde observations,” Atmos. Meas. Tech. 6 (3), 613–620 (2013).

    Article  Google Scholar 

  49. V. G. Arshinova, B. D. Belan, G. A. Ivlev, T. M. Rasskazchikova, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Complex assessment of the conditions of the air basin over Norilsk industrial region. Part 4. Vertical stratification of contaminants,” Atmos. Ocean. Opt. 19 (10), 814–817 (2006).

    Google Scholar 

  50. B. D. Belan, G. N. Tolmachev, and A. V. Fofonov, “Ozone vertical distribution in the troposphere over south regions of Western Siberia,” Atmos. Ocean. Opt. 24 (2), 181–187 (2011).

    Article  Google Scholar 

  51. P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, F. Nedelek, J.-D. Paris, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Large-scale studies of gaseous and aerosol composition of air over Siberia,” Opt. Atmos. Okeana 27 (3), 232–239 (2014).

    Google Scholar 

  52. B.D. Belan, Tropospheric Ozone (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. D. Belan.

Additional information

Original Russian Text © O.Yu. Antokhina, P.N. Antokhin, V.G. Arshinova, M.Yu. Arshinov, B.D. Belan, S.B. Belan, V.V. Belov, Yu.V. Gridnev, D.K. Davydov, G.A. Ivlev, A.V. Kozlov, K.S. Law, Ph. Nédélec, J.-D. Paris, T.M. Rasskazchikova, D.E. Savkin, D.V. Simonenkov, T.K. Sklyadneva, G.N. Tolmachev, A.V. Fofonov, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antokhina, O.Y., Antokhin, P.N., Arshinova, V.G. et al. Comparison of Distributions of Atmospheric Gas Admixture Concentrations Measured by Remote and In Situ Instruments over the Russian Sector of the Arctic. Atmos Ocean Opt 31, 626–634 (2018). https://doi.org/10.1134/S1024856018060027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856018060027

Keywords

Navigation