Skip to main content

Software for Retrieving the Water Vapor Continuum Absorption from Experimental Data

Abstract

The software was created to automatically retrieve the water vapor continuum absorption from experimental data. The program includes a baseline correction (if required), automatic correction of the experimental spectrum by frequency, automatic “spectroscopic” correction of the pressure measured, subtraction of spectral line local contributions, automatic selection of transparency microwindows most reliable for continuum retrieving, and, smoothing of the values obtained. The software is currently intended to be used for processing Fourier transform spectrometer FTS absorption spectra, but it can be adjusted for other experimental methods.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    K. P. Shine, I. V. Ptashnik, and G. Radel, “The water vapour continuum: Brief history and recent developments,” Surv. Geophys. 33, 535–555 (2012).

    ADS  Article  Google Scholar 

  2. 2.

    I. V. Ptashnik, “Water vapour continuum absorption: Short prehistory and current status,” Opt. Atmos. Okeana 28 (5), 443–459 (2015).

    Google Scholar 

  3. 3.

    D. J. Paynter, I. V. Ptashnik, K. P. Shine, K. M. Smith, R. McPheat, and R. G. Williams, “Laboratory measurements of the water vapour continuum in the 1200–8000 cm–1 region between 293 K and 351 K,” J. Geophys. Res. 114, D21301 (2009).

    ADS  Article  Google Scholar 

  4. 4.

    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapor selfcontinuum absorption in near-infrared windows derived from laboratory measurements,” J. Geophys. Res. 116, D16305 (2011).

    ADS  Article  Google Scholar 

  5. 5.

    A. A. Mitsel, I. V. Ptashnik, K. M. Firsov, and B. A. Fomin, “Efficient technique for line-by-line calculating the transmittance of the absorbing atmosphere,” Atmos. Oceanic Opt. 8, 847–850 (1995).

    Google Scholar 

  6. 6.

    I. E. Gordon, L. S. Rothman, C. Hill, R. V. Kochanov, Y. Tan, P. F. Bernath, M. Birk, V. Boudon, A. Campargue, K. V. Chance, B. J. Drouin, J.-M. Flaud, R. R. Gamache, J. T. Hodges, D. Jacquemart, V. I. Perevalov, A. Perrin, K. P. Shine, M.-A. H. Smith, J. Tennyson, G. C. Toon, H. Tran, V. G. Tyuterev, A. Barbe, A. G. Csaszar, V. M. Devi, T. Furtenbacher, J. J. Harrison, J.-M. Hartmann, A. Jolly, T. J. Johnson, T. Karman, I. Kleiner, A. A. Kyuberis, J. Loos, O. M. Lyulin, S. T. Massie, S. N. Mikhailenko, N. Moazzen-Ahmadi, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, O. L. Polyansky, M. Rey, M. Rotger, S. W. Sharpe, K. Sung, E. Starikova, S. A. Tashkun Auwera J. Vander, G. Wagner, J. Wilzewski, P. Wcislo, S. Yu, and E. J. Zak, “The HITRAN2016 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 203, 3–69 (2017).

    ADS  Article  Google Scholar 

  7. 7.

    A. Shillings, S. Ball, M. Barber, J. Tennyson, and R. L. Jones, “An upper limit for water dimmer absorption in the 750 nm spectral region and a revised water line list,” Atmos. Chem. Phys. 11, 4273–4287 (2011).

    ADS  Article  Google Scholar 

  8. 8.

    I. V. Ptashnik, T. E. Klimeshina, T. M. Petrova, A. A. Solodov, and A. M. Solodov, “Water vapor continuum absorption in the 2.7 and 6.25 µm bands at decreased temperatures,” Atmos. Ocean. Opt. 29 (3), 211–215 (2016).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to T. E. Klimeshina.

Additional information

Original Russian Text © T.E. Klimeshina, I.V. Ptashnik, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Klimeshina, T.E., Ptashnik, I.V. Software for Retrieving the Water Vapor Continuum Absorption from Experimental Data. Atmos Ocean Opt 31, 451–456 (2018). https://doi.org/10.1134/S1024856018050093

Download citation

Keywords

  • water vapor
  • continuum absorption
  • continuum retrieval
  • experimental data