Skip to main content

Ratio between Monomer and Dimer Absorption in Water Vapor within the H2O Rotational Band

Abstract

Spectral line shape derived using the asymptotic line wing theory (ALWT) with parameters obtained from fitting to experiment in the 8–12-μm spectral region, which describes the spectral and temperature behavior of water vapor absorption in this region, is used to calculate absorption in the longwave wing of the H2O rotational band. The absorption coefficient calculated with the ALWT takes into account absorption by any colliding molecular pairs, except for the absorption due to stable dimers. Application of this line shape to calculation of the absorption coefficient in the region 14–200 cm−1 allows us to extract the stable dimer absorption from the absorption measured with a special-resonator spectrometer. The dimer absorption spectrum derived shows consistency with the spectra from quantum-mechanical calculations and spectra measured in other experiments.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    P. W. Rosenkranz, “Pressure broadening of rotational bands. II. Water vapor from 300 to 1100 cm–1,” J. Chem. Phys. 87 (1), 163–170 (1987).

    ADS  Article  Google Scholar 

  2. 2.

    Q. Ma, R. H. Tipping, and C. Leforestier, “Temperature dependences of mechanisms responsible for the water-vapor continuum absorption: 1. Far wings of allowed lines,” J. Chem. Phys. 128 (12), 124313 (2008).

    ADS  Article  Google Scholar 

  3. 3.

    L. I. Nesmelova, O. B. Rodimova, and S. D. Tvorogov, Spectral Line Profile and Molecular Interaction (Nauka, Novosibirsk, 1986) [in Russian].

    MATH  Google Scholar 

  4. 4.

    S. D. Tvorogov and O. B. Rodimova, Collisional Profile of Spectral Lines (Publishing House of IAO SB RAS, Tomsk, 2013) [in Russian].

    Google Scholar 

  5. 5.

    E. A. Serov, T. A. Odintsova, M. Yu. Tretyakov, and V. E. Semenov, “On the origin of the water vapor continuum absorption within rotational and fundamental vibrational bands,” J. Quant. Spectrosc. Radiat. Transfer 193, 1–12 (2017).

    ADS  Article  Google Scholar 

  6. 6.

    I. V. Ptashnik, K. P. Shine, and A. A. Vigasin, “Water vapour self-continuum and water dimers: 1. Analysis of RECENT WORK,” J. Quant. Spectrosc. Radiat. Transfer 112, 1286–1303 (2011).

    ADS  Article  Google Scholar 

  7. 7.

    H. A. Gebbie, W. J. Burroughs, J. Chamberlain, J. E. Harries, and R. G. Jones, “Dimers of the water molecule in the Earth’s atmosphere,” Nature (Gr. Brit.) 221, 143–145 (1969).

    ADS  Article  Google Scholar 

  8. 8.

    J. S. Daniel, S. Solomon, R. W. Sanders, R. W. Portmann, D. C. Miller, and W. Madsen, “Implications for water monomer and dimer solar absorption for observations at Boulder, Colorado,” J. Geophys. Res., D 14 (104), 16785–16791 (1999).

    ADS  Article  Google Scholar 

  9. 9.

    C. Hill and R. Jones, “Absorption of solar radiation by water vapor in clear and cloudy skies: Implications for anomalous absorption,” J. Geophys. Res., D 7 (105), 9421–9428 (2000).

    ADS  Article  Google Scholar 

  10. 10.

    K. Pfeilsticker, A. Lotter, C. Peters, and H. Bosch, “Atmospheric detection of water dimers via near-infrared absorption,” Science 300 (5628), 2078–2080 (2003).

    ADS  Article  Google Scholar 

  11. 11.

    G. R. Low and H. G. Kjaergaard, “Calculation of OHstretching band intensities of the water dimer and trimer,” J. Chem. Phys. 110, 9104–9115 (1999).

    ADS  Article  Google Scholar 

  12. 12.

    M. A. Suhm, “How broad are water dimer bands?”, Science (Letter to the Editor) 304, 823 (2004).

    Google Scholar 

  13. 13.

    S. Kassi, P. Macko, O. Naumenko, and A. Campargue, “The absorption spectrum of water near 750 nm by CW-CRDS: Contribution to the search of water dimer absorption,” Phys. Chem. Chem. Phys. 7, 2460–2467 (2005).

    Article  Google Scholar 

  14. 14.

    K. Pfeilsticker, A. Lotter, C. Peters, and H. Bosch, “Atmospheric field measurements for the detection water dimer (H2O)2,” in Abstr. of the CECAM Meeting “Water Dimers and Weakly Interacting Species in Atmospheric Modelling”, Lyon, France, April 25–27, 2005.

    Google Scholar 

  15. 15.

    A. J. L. Shillings, S. M. Ball, M. J. Barber, J. Tennyson, and R. L. Jones, “An upper limit for water dimer absorption in the 750 nm spectral region and a revised water line list,” Atmos. Chem. Phys., No. 11, 4273–4287 (2011).

    ADS  Article  Google Scholar 

  16. 16.

    I. V. Ptashnik, “Water dimers: An “unknown” experiment,” Atmos. Ocean. Opt. 18 (4), 324–326 (2005).

    Google Scholar 

  17. 17.

    D. E. Burch, US Air Force Geophys. Laboratory Rep. AFGL-TR-85-0036, Absorption by H2O in Narrow Windows between 3000–4200 cm–1 (Massachusetts, Hanscom Air Force Base, 1985).

    Chapter  Google Scholar 

  18. 18.

    D. P. Schofield and H. G. Kjaergaard, “Calculated OH-stretching and HOH-bending vibrational transitions in the water dimer,” Phys. Chem. Chem. Phys. 5, 3100–3105 (2003).

    Article  Google Scholar 

  19. 19.

    D. J. Paynter, I. V. Ptashnik, K. P. Shine, and K. M. Smith, “Pure water vapor continuum measurements between 3100 and 4400 cm–1: Evidence for water dimer absorption in near atmospheric conditions,” Geophys. Rev. Lett. 34, L12808 (2007).

    ADS  Article  Google Scholar 

  20. 20.

    I. V. Ptashnik, K. M. Smith, K. P. Shine, and D. A. Newnham, “Laboratory measurements of water vapour continuum absorption in spectral region 5000–5600 cm–1: evidence for water dimers,” Q. J. R. Meteorol. Soc 130, 2391–2408 (2004).

    ADS  Article  Google Scholar 

  21. 21.

    M. Yu. Tret’yakov, M. A. Koshelev, E. A. Serov, V. V. Parshin, T. A. Odintsova, and G. M. Bubnov, “Water dimer and the atmospheric continuum,” Phys.- Uspekhi 184 (11), 1199–1215 (2014).

    Google Scholar 

  22. 22.

    T. A. Odintsova, M. Yu. Tretyakov, O. Pirali, and P. Roy, “Water vapor continuum in the range of rotational spectrum of H2O molecule: New experimental data and their comparative analysis,” J. Quant. Spectrosc. Radiat. Transfer 187, 116–123 (2017).

    ADS  Article  Google Scholar 

  23. 23.

    Yu. V. Bogdanova and O. B. Rodimova, “Discrimination of the water vapor dimmer spectrum within the rotational band of the monomer,” in Proc. of the XXIII Intern. Symp. Atmospheric and Ocean Optics. Atmospheric Physics (Publishing House of IAO SB RAS, Tomsk, 2017), p. A6–A9 [in Russian].

    Google Scholar 

  24. 24.

    S. D. Tvorogov and L. I. Nesmelova, “Radiative processes in the wings of bands of atmospheric gases,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 12 (6), 627–633 (1976).

    ADS  Google Scholar 

  25. 25.

    E. P. Gordov and S. D. Tvorogov, Method of Semiclassical Representation in the Quantum Theory (Nauka, Novosibirsk, 1984) [in Russian].

    Google Scholar 

  26. 26.

    S. D. Tvorogov and O. B. Rodimova, “Spectral line shape. I. Kinetic equation for arbitrary frequency detunings,” J. Chem. Phys. 102 (22), 8736–8745 (1995).

    ADS  Article  Google Scholar 

  27. 27.

    I. V. Ptashnik, R. A. McPheat, K. P. Shine, K. M. Smith, and R. G. Williams, “Water vapor self-continuum absorption in near-infrared windows derived from laboratory experiments,” J. Geophys. Res. 116, R. D16305 (2011).

    ADS  Article  Google Scholar 

  28. 28.

    D. J. Paynter, I. V. Ptashnik, K. P. Shine, K. M. Smith, R. McPheat, and R. G. Williams, “Laboratory measurements of the water vapour continuum in the 1200–8000 cm–1 region between 293 and 351 K,” J. Geophys. Res. 114, D21301 (2009).

    ADS  Article  Google Scholar 

  29. 29.

    I. V. Ptashnik, T. M. Petrova, Yu. N. Ponomarev, K. P. Shine, A. A. Solodov, and A. M. Solodov, “Near-infrared water vapour self-continuum at close to room temperature,” J. Quant. Spectrosc. Radiat. Transfer 120, 23–35 (2013).

    ADS  Article  Google Scholar 

  30. 30.

    O. B. Rodimova, “Spectral line shape and absorption in atmospheric windows,” Opt. Atmos. Okeana 28 (5), 460–473 (2015).

    Google Scholar 

  31. 31.

    O. B. Rodimova, “Continuum water vapor absorption in the 4000–8000 cm–1 region,” Proc. SPIE—Int. Soc. Opt. Eng. 9680, 968002–1 (2015).

    Google Scholar 

  32. 32.

    Yu. V. Bogdanova and O. B. Rodimova, “Line shape in far wings and water vapor absorption in a broad temperature interval,” J. Quant. Spectrosc. Radiat. Transfer 111 (15), 2298–2307 (2010).

    ADS  Article  Google Scholar 

  33. 33.

    Y. I. Baranov, W. J. Lafferty, Q. Ma, and R. H. Tipping, “Water-vapor continuum absorption in the 800–1250 cm–1 spectral region at temperatures from 311 to 363 K,” J. Quant. Spectrosc. Radiat. Transfer 109, 2291–2302 (2008).

    ADS  Article  Google Scholar 

  34. 34.

    T. E. Klimeshina and O. B. Rodimova, “Temperature dependence of the water vapor continuum absorption in the 3–5 µm spectral region,” J. Quant. Spectrosc. Radiat. Transfer 119, 77–83 (2013).

    ADS  Article  Google Scholar 

  35. 35.

    J. M. Hartmann, M. Y. Perrin, Q. Ma, and R. H. Tipping, “The infrared continuum of pure water vapor: Calculations and high-temperature measurements,” J. Quant. Spectrosc. Radiat. Transfer 49 (6), 675–691 (1993).

    ADS  Article  Google Scholar 

  36. 36.

    D. E. Burch, D. A. Gryvnak, and J. D. Pembrook, AFGL-TR-79-0054 (1979); Tech. Rep. AFCRL-TR-75-0420 (1975).

    Google Scholar 

  37. 37.

    S. A. Clough, F. X. Kneizys, and R. W. Davies, “Line shape and the water vapor continuum,” Atmos. Res 23 (3–4), 229–241 (1989).

    Article  Google Scholar 

  38. 38.

    Q. Ma and R. H. Tipping, “The atmospheric water continuum in the infrared: Extension of the statistical theory of Rozenkranz,” J. Chem. Phys. 93 (10), 7066–7075 (1990).

    ADS  Article  Google Scholar 

  39. 39.

    V. B. Podobedov, D. F. Plusquellic, K. E. Siegrist, G. T. Fraser, Q. Ma, and R. H. Tipping, “New measurements of the water vapor continuum in the region from 0.3 to 2.7 THz,” J. Quant. Spectrosc. Radiat. Transfer 109, 458–467 (2008).

    ADS  Article  Google Scholar 

  40. 40.

    H. G. Kjaergaard, A. L. Garden, G. M. Chaban, R. B. Gerber, D. A. Matthews, and J. F. Stanton, “Calculation of vibrational transition frequencies and intensities in water dimer: Comparison of different vibrational approaches,” J. Phys. Chem., A 112, 4324–4335 (2008).

    Article  Google Scholar 

  41. 41.

    I. Buryak and A. A. Vigasin, “Classical calculation of the equilibrium constants for true bound dimers using complete potential energy surface,” J. Chem. Phys. 143, 23430-4–23430-8 (2015).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Bogdanova.

Additional information

Original Russian Text © Yu.V. Bogdanova, O.B. Rodimova, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bogdanova, Y.V., Rodimova, O.B. Ratio between Monomer and Dimer Absorption in Water Vapor within the H2O Rotational Band. Atmos Ocean Opt 31, 457–465 (2018). https://doi.org/10.1134/S1024856018050056

Download citation

Keywords

  • water vapor
  • water dimers
  • spectral line wings
  • microwave absorption