Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 4, pp 431–435 | Cite as

Study of a High-Frequency Copper Bromide Vapor Active Medium in the Superradiance Mode

  • S. N. Torgaev
  • I. S. Musorov
  • M. V. TrigubEmail author
  • G. S. Evtushenko
Optical Sources and Receivers for Environmental Studies
  • 18 Downloads

Abstract

Results of the experimental study of two high-frequency active elements of different sizes of a CuBr laser operating in the generator, single-pass amplification, and superradiance modes are presented. A pulse repetition rate of 195 kHz is attained for the first time in the supperradiance mode. Using the method of express estimation of the radial profile, it is shown that the gain profile does not change significantly throughout a wide pulse repetition rate range (up to 195 kHz) in the case of a small-diameter active element.

Keywords

copper bromide vapor active medium laser monitor pulse repetition rate radial profile supperradiance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Pasmanik, K. I. Zemskov, and M. A. Kazaryan, Optical Systems with Brightness Amplifiers (IAP AS USSR, Gor’kii, 1988) [in Russian].Google Scholar
  2. 2.
    G. S. Evtushenko, M. V. Trigub, F. A. Gubarev, T. G. Evtushenko, S. N. Torgaev, and D. V. Shiyanov, “Laser monitor for non-destructive testing of materials and processes shielded by intensive background lighting,” Rev. Sci. Instrum. 85 (3), 1–5 (2014).CrossRefGoogle Scholar
  3. 3.
    A. P. Kuznetsov, R. O. Buzhinskii, K. L. Gubskii, A. S. Savelov, S. A. Sarantsev, and A. N. Terekhin, “Visualization of plasma-induced processes by a projection system with a Cu-laser-based brightness amplifier,” Plasma Phys. Rep. 36 (5), 428–437 (2010).ADSCrossRefGoogle Scholar
  4. 4.
    S. N. Torgaev, M. V. Trigub, G. S. Evtushenko, and T. G. Evtushenko, “High PRF metal vapor laser active media for visual and optical monitoring,” J. Phys.: Conf. Ser. 671, 012060 (2016).Google Scholar
  5. 5.
    O. I. Buzhinskij, N. N. Vasiliev, A. I. Moshkunov, I. A. Slivitskaya, and A. A. Slivitsky, “Copper vapor laser application for surface monitoring of divertor and first wall in ITER,” Fusion Eng. Des. 60, 141–155 (2002).CrossRefGoogle Scholar
  6. 6.
    M. V. Trigub, V. V. Platonov, K. V. Fedorov, G. S. Evtushenko, and V. V. Osipov, “CuBr laser for nanopowder production visualization,” Atmos. Oceanic Opt. 29 (4), 376–381 (2016).CrossRefGoogle Scholar
  7. 7.
    D. V. Beloplotov, M. V. Trigub, V. F. Tarasenko, G. S. Evtushenko, and M. I. Lomaev, “Laser monitor visualization of gas-dynamic processes under pulseperiodoc discharges initiated by runaway electrons in atmospheric pressure air,” Atmos. Ocean. Opt. 29 (4), 371–375 (2016).CrossRefGoogle Scholar
  8. 8.
    D. N. Astadzhov, N. K. Vuchkov, K. I. Zemskov, A. A. Isaev, M. A. Kazaryan, G. G. Petrash, and N. V. Sabotinov, “Active optical systems with a copper bromide vapor amplifier,” Sov. J. Quantum Electron. 18 (4), 457–459 (1988).ADSCrossRefGoogle Scholar
  9. 9.
    M. V. Trigub, K. V. Fedorov, and G. S. Evtushenko, “Remote object visualization using a laser monitor with a typical pulse duration of CuBr brightness amplifier,” Opt. Atmos. Okeana 28 (9) 850–853 (2015).Google Scholar
  10. 10.
    A. N. Soldatov, N. A. Yudin, N. A. Vasilieva, E. A. Kolmakov, Yu. P. Polunin, and I. D. Kostyrya, “Strontium vapour laser with a pulse repetition rate of up to 1 MHz,” Quantum Electron. 42 (1), 31–33 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    V. O. Nekhoroshev, V. F. Fedorov, G. S. Evtushenko, and S. N. Torgaev, “Copper bromide vapour laser with a pulse repetition rate up to 700 kHz,” Quantum Electron. 42 (10), 877–879 (2012).CrossRefGoogle Scholar
  12. 12.
    A. M. Boichenko, G. S. Evtushenko, V. O. Nekhoroshev, D. V. Shiyanov, and S. N. Torgaev, “CuBr–Ne–HBr laser with a high repetition frequency of the lasing pulses at a reduced energy deposition in the discharge,” Phys. Wave Phenom. 23 (1), 1–13 (2015).ADSCrossRefGoogle Scholar
  13. 13.
    M. V. Trigub, S. N. Torgaev, G. S. Evtushenko, and D. V. Shiyanov, “Technique for estimation of a CuBrlaser radiation radial profile,” in Proc. of LPM-2012, Sochi, September 24–28, 2012 (YuFU, Rostov-on-Don, 2012), p. 82 [in Russian].Google Scholar
  14. 14.
    Kulagin A. E., Torgaev S. N., Evtushenko G. S., and Trigub M. V. “Kinetics of the active medium of a copper vapor brightness amplifier,” Rus. Phys. J. 60 (11), 1987–1992 (2018).CrossRefGoogle Scholar
  15. 15.
    N. A. Vasnev, M. V. Trigub, V. O. Troitskii, V. A. Dimaki, and V. V. Vlasov, “Recovery of steadystate lasing in CuBr laser,” Opt. Atmos. Okeana. 30 (3), 259–263 (2017).Google Scholar
  16. 16.
    F. A. Gubarev, M. V. Trigub, V. O. Troitsky, and V. B. Sukhanov, “Gain characteristics of large volume CuBr laser active media,” Opt. Commun. 284 (10–11), 2565–2568 (2011).ADSCrossRefGoogle Scholar
  17. 17.
    F. A. Gubarev, M. V. Trigub, M. S. Klenovsky, L. Li, and G. S. Evtushenko, “Radial distribution of radiation in a CuBr vapor brightness amplifier used in laser monitors,” Appl. Phys. B 122 (1), 1–7 (2016).ADSCrossRefGoogle Scholar
  18. 18.
    G. S. Evtushenko, S. N. Torgaev, M. V. Trigub, D. V. Shiyanov, T. G. Evtushenko, and A. E. Kulagin, “High-speed CuBr brightness amplifier beam profile,” Opt. Commun. 383, 148–152 (2017).ADSCrossRefGoogle Scholar
  19. 19.
    M. V. Trigub, M. V. Burkov, P. S. Lyubutin, and S. N. Torgaev, “Investigation of distortions of images formed by a CuBr laser monitor,” Opt. Atmos. Okeana 29 (10), 850–854 (2016).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. N. Torgaev
    • 1
    • 2
    • 3
  • I. S. Musorov
    • 2
  • M. V. Trigub
    • 1
    • 2
    Email author
  • G. S. Evtushenko
    • 1
    • 2
  1. 1.Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk Polytechnic UniversityTomskRussia
  3. 3.Tomsk State UniversityTomskRussia

Personalised recommendations