Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 4, pp 400–404 | Cite as

Formation of Miniature Analogs of Bead Lightning in Nitrogen and Air during Pulsed Discharge in Nonuniform Electric Field

  • V. F. TarasenkoEmail author
  • D. V. Beloplotov
Optical Instrumentation

Abstract

The discharge glow dynamics during a nanosecond breakdown of air and nitrogen initiated by runaway electrons in a point–plane gap is studied with an ICCD camera. The formation of plasma bunches forming a structure analogous to a bead lightning is observed. It is shown that the number of bright plasma bunches in the gap (individual beads) increases with pressure. Up to four individual beads of equal size have been recorded in nitrogen at a pressure of 0.4 MPa.

Keywords

formation of a miniature bead lightning nanosecond breakdown of air and nitrogen nonuniform electric field runaway electrons 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Barry, Ball Lightning and Bead Lightning (Plenum Prss, New York, London, 1980).CrossRefGoogle Scholar
  2. 2.
    I. P. Stakhanov, About the Physical Nature of Ball Lightning (Nauchnyi mir, Moscow, 1996) [in Russian].Google Scholar
  3. 3.
    E. M. Bazelyan and Yu. P. Raizer, Physics of Lightning and Lightning Protection (Fizmatlit, Moscow, 2001) [in Russian].Google Scholar
  4. 4.
    V. A. Rakov and M. A. Uman, Lightning, Vol. 1 (Cambridge University Press, Cambridge, 2003).CrossRefGoogle Scholar
  5. 5.
    V. A. Donchenko, M. V. Kabanov, B. V. Kaul’, P. M. Nagorskii, and I. V. Samokhvalov, Electrooptical Phenomena in the Atmosphere (NTL, Tomsk, 2015) [in Russian].Google Scholar
  6. 6.
    Y. P. Raizer, G. M. Milikh, and M. N. Shneider, “Streamer and leader-like processes in the upper atmosphere: Models of red sprites and blue jets,” J. Geophys. Res.: Space Phys. 115 (A7), E42 (2010).CrossRefGoogle Scholar
  7. 7.
    V. A. Sadovnichii, M. I. Panasyuk, A. M. Amelyushkin, V. V. Bogomolov, V. V. Benghin, G. K. Garipov, V. V. Kalegaev, P. A. Klimov, B. A. Khrenov, V. L. Petrov, S. A. Sharakin, S. A. Shirokov, S. I. Svertilov, M. Y. Zotov, I. V. Yashin, E. S. Gorbovskoy, V.M. Lipunov, I. H. Park, J. Lee, S. Jeong, M. B. Kim, H. M. Jeong, Y. Y. Shprits, V. Angelopoulos, S. T. Russell, A. Runov, D. Turner, R. J. Strangeway, R. Caron, S. Biktemerova, A. Grinyuk, M. Lavrova, L. Tkachev, A. Tkachenko, O. Martinez, H. Salazar, and E. Ponce, “Lomonosov” satellite-space observatory to study extreme phenomena in space,” Space Sci. Rev. 212 (3-4), 1705 (2017).ADSCrossRefGoogle Scholar
  8. 8.
    O. Chanrion, T. Neubert, A. Mogensen, Y. Yair, M. Stendel, R. Singh, and D. Siingh, “Profuse activity of blue electrical discharges at the tops of thunderstorms,” Geophys. Res. Lett. 44 (1), 496–503 (2017).ADSCrossRefGoogle Scholar
  9. 9.
    E. A. Sosnin, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, “Blue jets and starters laboratory modelling by underpressure apokamp,” Opt. Atmos. Okeana. 29 (10), 855–868 (2016).Google Scholar
  10. 10.
    V. A. Panarin, V. S. Skakun, E. A. Sosnin, V. F. Tarasenko, “Laboratory simulation of blue and red diffuse minijets in air environment,” Opt. Atmos. Okeana. 30 (3), 243–253 (2017).CrossRefGoogle Scholar
  11. 11.
    E. A. Sosnin, E. Kh. Baksht, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, “Ministarters and mini blue jets in air and nitrogen under pulsed-periodic discharge in laboratory experiments,” Pis’ma Zh. Exp. Teor. Fiz. 105 (10), 600–604 (2017).Google Scholar
  12. 12.
    V. L. Bychkov, “New observational data on ball lightning,” in Proc. of the 15th Rus. Conf. on Cold Nuclear Transmutation of Chemical Elements and Ball Lightning, Dagomys city of Sochi, October 1–8, 2008 (Moscow, 2009), pp. 139–146.Google Scholar
  13. 13.
    A. M. Boichenko, “About the nature of bead lightning,” Fiz. Plazmy 22, 1012–1016 (1996).Google Scholar
  14. 14.
    V. F. Tarasenko, D. V. Beloplotov, E. Kh. Baksht, A. G. Burachenko, and M. I. Lomaev, “Analogue of bead lightning in a pulse discharge initiated by runaway electrons in atmospheric pressure air,” Atmos. Ocean. Opt. 28 (6), 591–597 (2015).CrossRefGoogle Scholar
  15. 15.
    Generation of Runaway Electrons and X-Rays in High-Pressure Discharges, Ed. By V. F. Tarasenko (STT, Tomsk, 2015) [in Russian].Google Scholar
  16. 16.
    V. M. Efanov, M. V. Efanov, A. V. Kricklenko, P. M. Yarin, A. V. Komashko, N. K. Savastianov, “Nanosecond all-solid-state pulse generators on basis of FID technology for plasma chemistry applications,” in 28th ICPIG, 15–20 July, 2007 (Czech Republic, Prague, 2007).Google Scholar
  17. 17.
    D. V. Rybka, I. V. Andronikov, G. S. Evtushenko, A. V. Kozyrev, V. Yu. Kozhevnikov, I. D. Kostyrya, V. F. Tarasenko, M. V. Trigub, and Yu. V. Shut’ko, “Corona discharge in atmospheric pressure air under a modulated voltage pulse of 10 ms,” Atmos. Ocean. Opt. 26 (5), 449–454 (2013).CrossRefGoogle Scholar
  18. 18.
    P. Kochkin, C. Kohn, U. Ebert, and L. van Deursen, “Analyzing X-ray emissions from meter-scale negative discharges in ambient air,” Plasma Sources Sci. Technol. 25, 044002 (2016).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of High-Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations