Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 4, pp 335–345 | Cite as

Vibrational Dependences of Broadening and Shift Coefficients of H2O Absorption Lines Perturbed by Ne, Kr, and Xe

  • V. I. Starikov
Spectroscopy of Ambient Medium

Abstract

The dependence of the intermolecular interaction potentials on the vibrational quantum numbers of the H2O molecule is derived for the H2O–Ne, H2O–Kr, and H2O–Xe systems. The broadening γ and shift δ coefficients are calculated for seven vibrational bands ν1, ν2, ν3, 2ν2, ν1 + ν2, ν2 + ν3, and ν1 + ν2 + ν3 of the H2O molecule from the absorption region 640–9550 cm−1. An analytical formula is suggested for calculation of the broadening coefficients γ at T = 296 K. It is shown that the excitation of stretching modes of the vibrations in the H2O molecule increases the broadening coefficients. The influence of the bending vibrations on γ is insignificant.

Keywords

line broadening vibrational dependence water vapor neon krypton xenon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. M. Petrova, A. M. Solodov, A. A. Solodov, and V. I. Starikov, “Vibrational dependence of an intermolecular potential for H2O–He system,” J. Quant. Spectrosc. Radiat. Transfer 129, 241–253 (2013).ADSCrossRefGoogle Scholar
  2. 2.
    T. M. Petrova, A. M. Solodov, A. A. Solodov, and V. I. Starikov, “Broadening parameters of the H2O–He collisional system for astrophysical applications,” J. Mol. Spectrosc. 321, 50–58 (2016).ADSCrossRefGoogle Scholar
  3. 3.
    T. M. Petrova, A. M. Solodov, A. A. Solodov, and V. I. Starikov, “Measurements and calculations of Arbroadening and shifting parameters of the water vapor transitions in the wide spectral region,” Mol. Phys. 115 (14), 1642–1656 (2017).ADSCrossRefGoogle Scholar
  4. 4.
    D. Robert and J. Bonamy, “Short range force effects in semiclassical molecular line broadening calculations,” J. Phys. (Paris) 40, 923–943 (1979).CrossRefGoogle Scholar
  5. 5.
    V. I. Starikov, “Vibration-rotation interaction potential for H2O–A system,” J. Quant. Spectrosc. Radiat. Transfer 155, 49–56 (2015).ADSCrossRefGoogle Scholar
  6. 6.
    B. Labani, J. Bonamy, D. Robert, J. M. Hartmann, and J. Taine, “Collisional broadening of rotationvibration lines for asymmetric top molecules. I. Theoretical model for both distant and close collisions,” J. Chem. Phys. 84, 4256–4267 (1986).ADSCrossRefGoogle Scholar
  7. 7.
    A. R. Hoy, I. M. Mills, and G. Strey, “Anharmonic force constant calculations,” Mol. Phys. 24 (6), 1265–1290 (1972).ADSCrossRefGoogle Scholar
  8. 8.
    M. R. Aliev and J. K. J. Watson, “Higher-order effects in the vibration-rotation spectra of semi rigid molecules,” in Molecular Spectroscopy: Modern Research, Ed. by K. N. Rao (Academic press, London, 1985).Google Scholar
  9. 9.
    C. Camy-Peyret and J. M. Flaud, “Vibration-rotation dipole moment operator for asymmetric rotors,” in Molecular Spectroscopy: Modern Research Ed. by K. N. Rao (Academic press, London, 1985).Google Scholar
  10. 10.
    V. I. Starikov, T. M. Petrova, A. M. Solodov, and A. A. Solodov, “Effective potentials for H2O–He and H2O–Ar systems. Part I. Isotropic induction-dispersion potentials,” Eur. Phys. J. D 71 (5), 108 (2017). doi doi 10.1140/epjd/e2017-70685-9ADSCrossRefGoogle Scholar
  11. 11.
    A. A. Radtsig and B. M. Smirnov, Handbook on Nuclear and Molecular Physics (Atomizdat, Moscow, 1980) [in Russian].Google Scholar
  12. 12.
    V. I. Starikov, “Neon-, krypton-, and xenon-broadened spectral lines of water vapor,” Opt. Spectrosc. 123 (1), 8–17 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    A. D. Bykov, L. N. Sinitsa, and V. I. Starikov, Experimental and Theoretical Techniques in Spectroscopy of Water Vapor Molecules (Publishing House of SB RAS, Novosibirsk, 1999).Google Scholar
  14. 14.
    C. Claveau, A. Henry, D. Hurtmans, and A. Valentin, “Narrowing and broadening parameters of H2O lines perturbed by He, Ne, Ar, Kr and nitrogen in the spectral range 1850–2140 cm-1,” J. Quant. Spectrosc. Radiat. Transfer 68, 273–298 (2001).ADSCrossRefGoogle Scholar
  15. 15.
    C. Claveau and A. Valentin, “Narrowing and broadening parameters for for H2O lines perturbed by helium, argon and xenon in the 1170–1440 cm-1 spectral range,” Mol. Phys. 107 (14), 1417–1422 (2009).ADSCrossRefGoogle Scholar
  16. 16.
    J. O. Hirschfelder, Ch. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (John Wiley and Sons, Inc., New York; Chapman and Hall, Lim., London, 1954).zbMATHGoogle Scholar
  17. 17.
    J. P. Bouanich, “Site-site Lennard-Jones potential parameters for N2, O2, H2, CO and CO2,” J. Quant. Spectrosc. Radiat. Transfer 47, 243–250 (1992).ADSCrossRefGoogle Scholar
  18. 18.
    G. Yu. Golubiatnikov, “Shifting and broadening parameters of the water 183 GHz line (313–220) by H2O, O2, N2, CO2, H2, He, Ne, Ar, and Kr at room temperature,” J. Mol. Spectrosc. 230 (2), 196–198 (2005).ADSCrossRefGoogle Scholar
  19. 19.
    D. Lisak, G. Rusciano, and A. Sasso, “An accurate comparison of lineshape models on H2O lines in the spectral region around 3 µm,” J. Mol. Spectrosc. 227 (2), 162–171 (2004).ADSCrossRefGoogle Scholar
  20. 20.
    A. D. Bykov, V. V. Lazarev, Yu. N. Ponomarev, V. N. Stroinova, and B. A. Tikhomirov, “H2O absorption line shifts in the ν1 + 3ν3 band induced by noble gas pressure,” Atmos. Ocean. Opt. 7 (9), 651–657 (1994).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Tomsk State University of Control Systems and RadioelectronicsTomskRussia
  2. 2.National Research Tomsk Polytechnic UniversityTomskRussia

Personalised recommendations