Atmospheric and Oceanic Optics

, Volume 31, Issue 4, pp 397–399 | Cite as

The Field Strength Necessary for the Formation of Blue Jets in the Middle Atmosphere

  • E. A. SosninEmail author
  • V. A. Panarin
  • V. S. Skakun
  • V. F. Tarasenko
Optical Instrumentation


The formation of blue jets in air at low pressures is simulated using an apokamp discharge. The field strength is measured in the discharge channel. Assuming the applicability of similarity laws to gas discharges, the field strength in a storm cloud during the formation of blue jets is assessed to be from 6 × 1010 to 1.9 × 109 V/m, which is much higher than the values characteristic of the development of cloud-to-ground lightning discharges. A hypothesis is suggested that excess magnitudes of characteristic fields is among features of high-voltage pulsed discharge within a cloud, which results in the formation of blue jets at altitudes of about 12–18 km.


apokamp discharge blue jets electrical field strength similarity laws in discharge transient luminous events 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Siingh, R. P. Singh, S. Kumar, T. Dharmaraj, A. K. Singh, A. K. Singh, M. N. Patil, and S. Singh, “Lightning and middle atmospheric discharges in the atmosphere,” J. Atmos. Sol.-Terr. Phys. 134 (10), 78–101 (2015).ADSCrossRefGoogle Scholar
  2. 2.
    E. M. Wescott, D. Sentman, H. C. Stenbaek-Nielsen, P. Huet, M. J. Heavner, and D. R. Moudry, “New evidence for the brightness and ionization of blue starters and blue jets,” J. Geophys. Res., A 106 (10), 21549–21554 (2001).ADSCrossRefGoogle Scholar
  3. 3.
    T. Neubert, M. Rycroft, T. Farges, E. Blanc, O. Chanrion, E. Arnone, A. Odzimek, N. Arnold, C.-F. Enell, E. Turunen, N. Bosinger, A. Mika, C. Haldoupis, R. J. Steiner, O. van Der Velde, S. Soula, P. Berg, F. Boberg, P. Thejll, B. Christiansen, M. Ignaccolo, M. Fullekrug, P.T. Verronen, J. Montanya, and N. Crosby, “Recent results from studies of electric discharges in the mesosphere,” Surv. Geophys. 29 (2), 71–137 (2008).ADSCrossRefGoogle Scholar
  4. 4.
    O. Chanrion, T. Neubert, A. Mogensen, Y. Yair, M. Stendel, R. Singh, and D. Siingh, “Profuse activity of blue electrical discharges at the tops of thunderstorms,” Geophys. Rev. Lett. 44 (1), 496–503 (2017).ADSCrossRefGoogle Scholar
  5. 5.
    V. A. Sadovnichii, M. I. Panasyuk, A. M. Amelyushkin, V. V. Bogomolov, V. V. Benghin, G. K. Garipov, V. V. Kalegaev, P. A. Klimov, B. A. Khrenov, V. L. Petrov, S. A. Sharakin, S. A. Shirokov, S. I. Svertilov, M. Y. Zotov, I. V. Yashin, E. S. Gorbovskoy, V. M. Lipunov, I. H. Park, J. Lee, S. Jeong, M. B. Kim, H. M. Jeong, Y. Y. Shprits, V. Angelopoulos, S. T. Russell, A. Runov, D. Turner, R. J. Strangeway, R. Caron, S. Biktemerova, A. Grinyuk, M. Lavrova, L. Tkachev, A. Tkachenko, O. Martinez, H. Salazar, and E. Ponce, "“Lomonosov” satellite-space observatory to study extreme phenomena in space," Space Sci. Rev. 212 (3-4), 1705 (2017).ADSCrossRefGoogle Scholar
  6. 6.
    Y. P. Raizer, G. M. Milikh, and M. N. Shneider, “Streamer and leader-like processes in the upper atmosphere: Models of red sprites and blue jets,” J. Geophys. Res.: Space Phys. 115 (A7), E42 (2010).CrossRefGoogle Scholar
  7. 7.
    E. V. Mishin and G. M. Milikh, “Blue jets: Upward lightning,” in Planetary Atmospheric Electricity, Ed. by F. Leblanc, K. L. Aplin, Y. Yair, R. G. Harrison, J. P. Lebreton, and M. Blanc (Springer Science + Business Media, New York, 2008).Google Scholar
  8. 8.
    V. S. Skakun, V. A. Panarin, D. S. Pechenitsin, E. A. Sosnin, and V. F. Tarasenko, “Formation of an apokampic discharge under atmospheric pressure conditions,” Rus. Phys. J. 59 (5), 701–711 (2016).CrossRefGoogle Scholar
  9. 9.
    E. A. Sosnin, V. S. Skakun, V. A. Panarin, D. S. Pechenitsin, V. F. Tarasenko, and E. Kh. Baksht, “Phenomenon of Apocamp Discharge,” JETF Letters. 103 (12), 761–764 (2016).ADSCrossRefGoogle Scholar
  10. 10.
    E. A. Sosnin, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, “Blue jets and starters laboratory modeling by underpressure apokamp,” Opt. Atmos. Okeana 29 (10), 855–868 (2016).Google Scholar
  11. 11.
    V. A. Panarin, V. S. Skakun, E. A. Sosnin, and V. F. Tarasenko, “Laboratory simulation of blue and red diffuse minijets in air environment,” Opt. Atmos. Okeana 30 (3), 243–253 (2017).CrossRefGoogle Scholar
  12. 12.
    E. A. Sosnin, E. Kh. Baksht, V. A. Panarin, V. S. Skakun, and V. F. Tarasenko, “Ministarters and Mini Blue Jets in Air and Nitrogen at a Pulse-Periodic Discharge in a Laboratory Experiment,” JETP Lett. 105 (10), 641–645 (2017).ADSCrossRefGoogle Scholar
  13. 13.
    E. A. Sosnin, G. V. Naidis, V. F. Tarasenko, V. S. Skakun, V. A. Panarin, and N. Yu. Babaeva, “On the Physical Nature of Apokampic Discharge,” JETP. 125 (5), 920–925 (2017).ADSCrossRefGoogle Scholar
  14. 14.
    V. F. Tarasenko, V. A. Panarin, V. S. Skakun, and E. A. Sosnin, “Laboratory demonstration in the air red and blue mini-jets,” J. Phys.: Conf. Ser. 927, 012062 (2017).Google Scholar
  15. 15.
    G. A. Mesyats, “Similarity laws for pulsed gas discharges,” 49 (10), 1045–1065 (2006).Google Scholar
  16. 16.
    V. A. Donchenko, M. V. Kabanov, B. V. Kaul’, P. M. Nagorskii, and I. V. Samokhvalov, Electrooptical Phenomena in the Atmosphere (NTL, Tomsk, 2015) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Sosnin
    • 1
    Email author
  • V. A. Panarin
    • 1
  • V. S. Skakun
    • 1
  • V. F. Tarasenko
    • 1
  1. 1.Institute of High-Current Electronics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations