Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 4, pp 419–423 | Cite as

Atomic Lines of Amplified Spontaneous Emission during Optical Pumping of Yb by KrF*-Laser Radiation

  • V. G. SokovikovEmail author
  • V. E. Prokop’ev
  • A. V. Klimkin
Optical Sources and Receivers for Environmental Studies
  • 13 Downloads

Abstract

Results on quasi-resonant optical pumping of Yb vapors by KrF*-laser radiation (λp = 248 nm) are presented. The radiation was converted to the visible range to be available for study. Strong lines of amplified spontaneous emission are detected. These lines are due to transitions between the groups of even (6s5d1D2, 6s6d3D1, 2, 3) and odd Yb levels (6s6p1P10, 6s6p3P 0,1,2 0 ). Coherent radiation is detected at Yb resonance lines with λ = 398.8 and 555.6 nm, which are caused, respectively, by the 6s6p1P10 → 6s6s1S0 and 6s6p3P10 → 6s6s1S0 transitions in the Yb atom. A sequence of processes that lead to the formation of inversion at the Yb atomic transitions is qualitatively examined.

Keywords

metal vapors optical pumping metal vapor lasers stimulated electronic Raman scattering amplified spontaneous emission 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Laser Handbook, Vol. 1, Ed. by A. M. Prokhorov (Sov. Radio, Moscow, 1978) [in Russian].Google Scholar
  2. 2.
    A. A. Isaev and G. G. Petrash, “Study of pulsed gaseous atomic transition lasers,” in Proceedings of Lebedev Physical Institute, Academy of Sciences of USSR (Nauka, Moscow, 1975), vol. 81, pp. 3–88 [in Russian].Google Scholar
  3. 3.
    Tables of Physical Quantities. Handbook, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976) [in Russian].Google Scholar
  4. 4.
    V. M. Klimkin, V. E. Prokop’ev, and V. G. Sokovikov, “Study of the dependence on the lasing power at Yb IR lines on the pumping pulse frequency,” Kvant. Elektron. 8 (4), 722–725 (1982).Google Scholar
  5. 5.
    V. S. Verkhovskii, V. M. Klimkin, V. E. Prokop’ev, V. G. Sokovikov, V. F. Tarasenko, and A. I. Fedorov, “Study of Raman radiation of excimer electron transition lasers,” Kvant. Elektron. 9 (11), 2151–2155 (1982).Google Scholar
  6. 6.
    V. M. Klimkin, V. E. Prokopiev, and V. G. Sokovikov, “New possibilities of producing population conversion on resonance atomic and ionic transitions in chemical elements,” in Technical digest of XI All-Union Conf. Coherent. and Nonlinear Opt. Part I (Erevan, 1982), pp. 76–77.Google Scholar
  7. 7.
    V. G. Sokovikov and A. V. Klimkin, “Four-wave parametric processes, observed at research of stimulated electronic Raman scattering in metal vapors”, Optika Atmosf. Okeana 25 (3), 230–236 (2012).Google Scholar
  8. 8.
    V. G. Sokovikov and A. V. Klimkin, “Stimulated raman scattering of XeF* and KrF laser radiation in samarium and europion vapors,” Atmos. Ocean. Opt. 27 (5), 447–453 (2014).CrossRefGoogle Scholar
  9. 9.
    J. White, J. Bokor, and D. Henderson, “Optically pumped atomic thulium lasers,” IEEE J. Quantum Electron. QE–18 (3), 320–322 (1982).ADSCrossRefGoogle Scholar
  10. 10.
    V. G. Sokovikov, V. M. Klimkin, and V. E. Prokop’ev, “Optical-pumping lasing of stimulated emission by transitions to ground and metastable states of Eu ion,” Opt. Atmos. Okeana 23 (5), 359–363 (2010).CrossRefGoogle Scholar
  11. 11.
    V. G. Sokovikov, “Investigation of two-photon selective ionization in vapors of alkaline earth and rare earth elements,” Opt. Atmos. Okeana 25 (2), 190–197 (2012).Google Scholar
  12. 12.
    C. H. Corliss and W. R. Bozman, Experimental transition probabilities for spectral lines of seventy elements (National Bureau of Standards Press, Washington, DC, 1962).CrossRefGoogle Scholar
  13. 13.
    J. L. Carlsten, A. Szoke, and M. G. Raymer, “Collisional redistribution and saturation of near resonance scattered light,” Phys. Rev., A 15 (3), 1029–1045 (1977).ADSCrossRefGoogle Scholar
  14. 14.
    J. Reif and H. Walther, “Generation of tunable 16 µm radiation by stimulated hyper-Raman effect in strontium vapor,” Appl. Phys. 15, 361–364 (1978).ADSCrossRefGoogle Scholar
  15. 15.
    S. A. Bakhramov, G. Kh. Tartakovskii, and P. K. Khabibullaev, Nonlinear Resonance Processes and Frequency Conversion in Gases (FAN, Tashkent, 1981) [in Russian].Google Scholar
  16. 16.
    D. W. Trainor and S. A. Mani, “Atomic calcium laser: Pumped via collision-induced absorption,” J. Opt. Soc. Am. 68 (11), 1203–1205 (1978).Google Scholar
  17. 17.
    M. Madigan, L. O. Hocker, J. H. Flint, and C. F. Dewey, “Pressure dependence of the infrared laser lines in barium vapor,” IEEE J. Quantum. Electron. QE–15 (12), 1294–1926 (1980).ADSCrossRefGoogle Scholar
  18. 18.
    Excimer Lasers, Ed. by C. K. Rhodes (Springer, 1979).Google Scholar
  19. 19.
    V. E. Prokop’ev and A.S. Yatsenko, Preprint No. 160 (Institute of Automation and Electrometry, Siberian Branch, Academy of Sciences of USSR, Novosibirsk, 1981).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. G. Sokovikov
    • 1
    Email author
  • V. E. Prokop’ev
    • 2
  • A. V. Klimkin
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Institute of High-Current ElectronicsTomskRussia

Personalised recommendations