Skip to main content

Study of the Water Vapor Absorption Spectrum in the Visible Spectral Region from 19480 to 20500 cm−1

Abstract

The vibrational-rotational absorption spectrum of water vapor was recorded and analyzed in the visible spectral region from 19480 to 20500 cm−1. The measurements were carried out using an IFS-125M Fourier spectrometer with a resolution of 0.05 cm−1 at a pressure of 26.3 mbar, a temperature of (24 ± 1)°C, and optical path 24 m. We used a multipass White cell with a base length of 60 cm. A light-emitting diode was used as a radiation source. The signal-to-noise ratio was about 20000. The list of more than 420 lines has been compiled as a result of the analysis the spectrum, which includes line centers, intensities, and quantum vibrational-rotational numbers. More than 220 vibrational-rotational energy levels of 21 upper vibrational states have been determined from the experimental data.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. Tinetti, J. Tennison, A. Caitlin, and C. Griffith, “Water in exoplanets,” Philos. Trans. R. Soc., A 370, 2749–2764 (2012).

    ADS  Article  Google Scholar 

  2. 2.

    A. D. Bykov, L. N. Sinitsa, and V. I. Starikov, Experimental and Theoretical Techniques in Water Vapor Spectroscopy (Publishing House of SB RAS, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  3. 3.

    R. Mecke, “Das Rotationsschwingungsspektrum Des Wasserdampfes. I,” Z. Phys. 81 (5-6), 313–331 (1933).

    ADS  Article  Google Scholar 

  4. 4.

    A. B. Antipov, A. D. Bykov, V. A. Kapitanov, V. P. Lopasov, Yu. S. Makushkin, V. I. Tolmachev, O. N. Ulenikov, and V. E. Zuev, “Water-vapor absorption spectrum in the 0.59-µm region,” J. Mol. Spectrosc. 89 (2), 449–459 (1981).

    ADS  Article  Google Scholar 

  5. 5.

    C. Camy-Peyret, J.-M. Flaud, J.-Y. Mandin, J. P. Chevillard, J. Brault, D. A. Ramsay, M. Vervloet, and J. Chauville, “The high-resolution spectrum of water vapor between 16500 and 25250 cm–1,” J. Mol. Spectrosc. 113 (1), 208–228 (1985).

    ADS  Article  Google Scholar 

  6. 6.

    M. Carleer, A. Jenouvrier, A.-C. Vandaele, P. F. Bernath, M. F. Merienne, R. Colin, N. F. Zobov, O. L. Polyansky, J. Tennyson, and V. A. Savin, “The near infrared, visible, and near ultraviolet overtone spectrum of water,” J. Chem. Phys. 111, 2444–2450 (1999).

    ADS  Article  Google Scholar 

  7. 7.

    R. N. Tolchenov, O. Naumenko, N. F. Zobov, S. V. Shirin, O. L. Polyansky, J. Tennyson, M. Carleer, P.-F. Coheur, S. Fally, A. Jenouvrier, and A. C. Vandaele, “Water vapour line assignments in the 9250–26000 cm–1 frequency range,” J. Mol. Spectrosc. 233 (1), 68–76 (2005).

    ADS  Article  Google Scholar 

  8. 8.

    J. Tennyson, P. Bernath, L. Brown, A. Campargue, A. Csaszar, L. Daumont, R. Gamache, J. Hodges, O. Naumenko, O. Polyansky, L. Rothman, A. Vandaele, N. Zobov, A. Derzia, C. Fabri, A. Fazliev, T. Furtenbacher, I. Gordon, L. Lod, and I. Mizus, “IUPAC Critical evaluation of the rotational-vibrational spectra of water vapor, Part III: Energy levels and transition wavenumbers for H2 16O,” J. Quant. Spectrosc. Radiat. Transfer 117, 29–58 (2013).

    ADS  Article  Google Scholar 

  9. 9.

    L. S. Rothman, I. E. Gordon, Y. Babikov, A. Barbe, D. C. Benner, P. F. Bernath, M. Birk, L. Bizzicchi, V. Boudon, L. R. Brown, A. Campargue, K. Chance, L. H. Cohen, L. H. Coudert, V. M. Devi, B. J. Drouin, A. Fayt, J.-M. Flaud, R. R. Gamache, J. J. Harrison, J.-M. Hartmann, C. Hill, J. T. Hodges, D. Jacquemart, A. Jolly, J. Lamouroux, R. J. Le Roy, G. Li, D. A. Long, O. M. Lyulin, C. J. Mackie, S. T. Massie, S. Mikhailenko, H. S. P. Muller, O. V. Naumenko, A. V. Nikitin, J. Orphal, V. Perevalov, A. Perrin, E. R. Polovtseva, C. Richard, M. A. H. Smith, E. Starikova, K. Sung, S. Tashkun, J. Tennyson, G. C. Toon, Vl. G. Tyuterev, and G. Wagner, “The HITRAN 2012 molecular spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 130, 4–50 (2013).

    ADS  Article  Google Scholar 

  10. 10.

    N. Jacquinet-Husson, L. Crepeau, R. Armante, C. Boutammine, A. Chedin, N. A. Scott, C. Crevoisier, C. Crevoisier, V. Capelle, C. Boone, N. Poulet-Crovisier, A. Barbe, A. Campargue, D. C. Benner, Y. Benilan, B. Bezard, V. Boudon, L. R. Brown, L.H. Coudert, A. Coustenis, V. Dana, V. M. Devi, S. Fally, A. Fayt, J.-M. Flaud, A. Goldman, M. Herman, G. J. Harris, D. Jacquemart, A. Jolly, I. Kleiner, A. Kleinbohl, F. Kwabia-Tchana, N. Lavrentieva, N. Lacome, O. M. Lyulin, J.-Y. Mandin, A. Maki, S. Mikhailenko, C. E. Miller, T. Mishina, N. Moazzen-Ahmadi, H. S. P. Muller, A. Nikitin, J. Orphal, V. Perevalov, A. Perrin, D. T. Petkie, A. Predoi-Cross, C. P. Rinsland, J. Remedios, M. Rotger, M. A. H. Smith, K. Sung, S. Tashkun, J. Tennyson, R. A. Toth, A. C. Vandaele, Auwera J. Vander, and L.-H. Xu, “The 2009 edition of the GEISA spectroscopic database,” J. Quant. Spectrosc. Radiat. Transfer 112 (15), 2395–2445 (2011).

    ADS  Article  Google Scholar 

  11. 11.

    https://doi.org/spectra.iao.ru. Cited May 14, 2017.

  12. 12.

    https://doi.org/wadis.saga.iao.ru Cited May 14, 2017.

  13. 13.

    V. I. Serdyukov, L. N. Sinitsa, and S. S. Vasilchenko, “Highly sensitive Fourier transform spectroscopy with LED sources,” J. Mol. Spectrosc. 290, 13–17 (2013).

    ADS  Article  Google Scholar 

  14. 14.

    V. I. Serdyukov, “New possibilities of highly sensitive molecular absorption spectra in the visible region of the spectrum,” Opt. Atmos. Okeana 26 (9), 817–821 (2013).

    Google Scholar 

  15. 15.

    S. S. Vasil’chenko and V. I. Serdyukov, “Emission spectrum of neon as a frequency reference for spectrophotometers,” Atmos. Ocean. Opt. 26 (2), 154–158 (2013).

    Article  Google Scholar 

  16. 16.

    T. V. Kruglova and A. P. Shcherbakov, “Automated line search in molecular spectra based on nonparametric statistical methods: Regularization in estimating parameters of spectral lines,” Opt. Spectrosc. 111, 353–356 (2011).

    ADS  Article  Google Scholar 

  17. 17.

    R. J. Barber, J. Tennyson, G. J. Harris, and R. N. Tolchenov, “A high-accuracy computed water line list,” Mon. Not. R. Astron. Soc. 368, 1087–1094 (2006).

    ADS  Article  Google Scholar 

  18. 18.

    A. D. Bykov, O. V. Naumenko, A. M. Pshenichnikov, L. N. Sinitsa, and A. P. Shcherbakov, “An expert system for identification of lines in vibrational-rotational spectra,” Opt. Spectrosc. 94, 528–537 (2003).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. N. Sinitsa.

Additional information

Original Russian Text © L.N. Sinitsa, V.I. Serdyukov, E.R. Polovtseva, A.D. Bykov, A.P. Shcherbakov, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sinitsa, L.N., Serdyukov, V.I., Polovtseva, E.R. et al. Study of the Water Vapor Absorption Spectrum in the Visible Spectral Region from 19480 to 20500 cm−1. Atmos Ocean Opt 31, 329–334 (2018). https://doi.org/10.1134/S1024856018040115

Download citation

Keywords

  • Fourier-transform spectroscopy
  • absorption of water vapor
  • visible spectral region
  • spectral line parameters
  • energy levels