Skip to main content

Detection of Schools of Marine Fish Using Polarization Laser Sensing

Abstract

General regularities of lidar returns in the sensing of the water column containing pelagic fish schools are investigated by the Monte Carlo method. Based on results of statistical simulation of depth profiles of lidar return power and depolarization, we propose a method of polarization laser sensing of marine fish schools based on a comparison of numerical values of the lidar return power and depolarization with their threshold levels determined by the sea water extinction index in the fishery region.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Yu. B. Yudovich and A. A. Baral, Exploratory Fishing (Pishchevaya promyshlennost’, Moscow, 1968) [in Russian].

    Google Scholar 

  2. 2.

    D. L. Murphree, C. D. Taylor, and R. V. McClendon, “Mathematical modeling for the detection of fish by an airborne laser,” AIAA J. 12 (12), 1686–1692 (1974).

    ADS  Article  Google Scholar 

  3. 3.

    K. Fredriksson, B. Galle, K. Nystrom, S. Svanberg, and B. Ostrom, Underwater Laser-Radar Experiments for Bathymetry and Fish-School Detection. Göteborg Institute of Physics Reports GIPR-162 (Chalmers University of Technology, Göteborg, 1978).

    Google Scholar 

  4. 4.

    J. M. Churnside, D. A. Demer, and D. Mohmoudi, “A comparison of lidar and echosounder measurements of fish schools in the Gulf of Mexico,” ICES J. Mar. Sci. 60, 147–154 (2003). doi 10.1006/jmsc2003.1327

    Article  Google Scholar 

  5. 5.

    J. M. Churnside and J. J. Wilson, “Airborne imaging of salmon,” Appl. Opt. 43 (6), 1416–1424 (2004).

    ADS  Article  Google Scholar 

  6. 6.

    J. M. Churnside, J. J. Wilson, and V. V. Tatarskii, “Lidar profiles of fish schools,” Appl. Opt. 36 (24), 6011–6020 (1997).

    ADS  Article  Google Scholar 

  7. 7.

    T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters (Scripps Institution of Oceanolography, Visibility laboratory, 1972).

    Book  Google Scholar 

  8. 8.

    Yu. I. Kopilevich, M. E. Kononenko, and E. I. Zadorozhnaya, “The effect of the forward-scattering index on the characteristics of a light beam in sea water,” J. Opt. Technol. 77 (10), 598–601 (2010).

    Article  Google Scholar 

  9. 9.

    M. M. Krekova, G. M. Krekov, I. V. Samokhvalov, and V. S. Shamanaev, “Numerical evaluation of the possibilities of remote laser sensing of fish schools,” Appl. Opt. 33 (24), 5715–5720 (1994).

    ADS  Article  Google Scholar 

  10. 10.

    V. S. Shamanaev, M. M. Krekova, and I. E. Penner, “The effect of optical characteristics of water on lidar bathimetry,” in Abstr. of “Workshop on Lidar Remote Sensing of Land and Sea”, May 6–8, 1991, Florence, Italy, p.37.

  11. 11.

    V. S. Shamanaev, M. M. Krekova, and I. E. Penner, “Polarization Characteristics for Lidar Returns Under the Sea Water,” in Abstr. of “Workshop on Lidar Remote Sensing of Land and Sea”, May 6–8, 1991, Florence, Italy, p.38.

  12. 12.

    M. M. Krekova, G. M. Krekov, V. S. Shamanaev, and I. E. Penner, “Estimates of polarization characteristics of lidar signal from sea water containing the stratified inhomogeneities,” Atmos. Ocean. Opt. 7 (1), 35–39 (1994).

    Google Scholar 

  13. 13.

    V. S. Shamanaev, I. E. Penner, G. P. Kokhanenko, and M. M. Krekova, “Aircraft lidar for ocean sounding,” Nauka Proizvodstvu, No. 9 (65), 20–23 (2003).

    Google Scholar 

  14. 14.

    USSR Inventor’s Certificate No. 1119456, Byull. Izobret., No. 34 (1992).

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to V. S. Shamanaev.

Additional information

Original Russian Text © V.S. Shamanaev, 2018, published in Optika Atmosfery i Okeana.

The article was translated by the authors.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shamanaev, V.S. Detection of Schools of Marine Fish Using Polarization Laser Sensing. Atmos Ocean Opt 31, 358–364 (2018). https://doi.org/10.1134/S1024856018040103

Download citation

Keywords

  • airborne lidar
  • polarization
  • ocean optics
  • bioproductivity
  • remote sensing