Atmospheric and Oceanic Optics

, Volume 31, Issue 4, pp 358–364 | Cite as

Detection of Schools of Marine Fish Using Polarization Laser Sensing

  • V. S. ShamanaevEmail author
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface


General regularities of lidar returns in the sensing of the water column containing pelagic fish schools are investigated by the Monte Carlo method. Based on results of statistical simulation of depth profiles of lidar return power and depolarization, we propose a method of polarization laser sensing of marine fish schools based on a comparison of numerical values of the lidar return power and depolarization with their threshold levels determined by the sea water extinction index in the fishery region.


airborne lidar polarization ocean optics bioproductivity remote sensing 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. B. Yudovich and A. A. Baral, Exploratory Fishing (Pishchevaya promyshlennost’, Moscow, 1968) [in Russian].Google Scholar
  2. 2.
    D. L. Murphree, C. D. Taylor, and R. V. McClendon, “Mathematical modeling for the detection of fish by an airborne laser,” AIAA J. 12 (12), 1686–1692 (1974).ADSCrossRefGoogle Scholar
  3. 3.
    K. Fredriksson, B. Galle, K. Nystrom, S. Svanberg, and B. Ostrom, Underwater Laser-Radar Experiments for Bathymetry and Fish-School Detection. Göteborg Institute of Physics Reports GIPR-162 (Chalmers University of Technology, Göteborg, 1978).Google Scholar
  4. 4.
    J. M. Churnside, D. A. Demer, and D. Mohmoudi, “A comparison of lidar and echosounder measurements of fish schools in the Gulf of Mexico,” ICES J. Mar. Sci. 60, 147–154 (2003). doi 10.1006/jmsc2003.1327CrossRefGoogle Scholar
  5. 5.
    J. M. Churnside and J. J. Wilson, “Airborne imaging of salmon,” Appl. Opt. 43 (6), 1416–1424 (2004).ADSCrossRefGoogle Scholar
  6. 6.
    J. M. Churnside, J. J. Wilson, and V. V. Tatarskii, “Lidar profiles of fish schools,” Appl. Opt. 36 (24), 6011–6020 (1997).ADSCrossRefGoogle Scholar
  7. 7.
    T. J. Petzold, Volume Scattering Functions for Selected Ocean Waters (Scripps Institution of Oceanolography, Visibility laboratory, 1972).CrossRefGoogle Scholar
  8. 8.
    Yu. I. Kopilevich, M. E. Kononenko, and E. I. Zadorozhnaya, “The effect of the forward-scattering index on the characteristics of a light beam in sea water,” J. Opt. Technol. 77 (10), 598–601 (2010).CrossRefGoogle Scholar
  9. 9.
    M. M. Krekova, G. M. Krekov, I. V. Samokhvalov, and V. S. Shamanaev, “Numerical evaluation of the possibilities of remote laser sensing of fish schools,” Appl. Opt. 33 (24), 5715–5720 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    V. S. Shamanaev, M. M. Krekova, and I. E. Penner, “The effect of optical characteristics of water on lidar bathimetry,” in Abstr. of “Workshop on Lidar Remote Sensing of Land and Sea”, May 6–8, 1991, Florence, Italy, p.37.Google Scholar
  11. 11.
    V. S. Shamanaev, M. M. Krekova, and I. E. Penner, “Polarization Characteristics for Lidar Returns Under the Sea Water,” in Abstr. of “Workshop on Lidar Remote Sensing of Land and Sea”, May 6–8, 1991, Florence, Italy, p.38.Google Scholar
  12. 12.
    M. M. Krekova, G. M. Krekov, V. S. Shamanaev, and I. E. Penner, “Estimates of polarization characteristics of lidar signal from sea water containing the stratified inhomogeneities,” Atmos. Ocean. Opt. 7 (1), 35–39 (1994).Google Scholar
  13. 13.
    V. S. Shamanaev, I. E. Penner, G. P. Kokhanenko, and M. M. Krekova, “Aircraft lidar for ocean sounding,” Nauka Proizvodstvu, No. 9 (65), 20–23 (2003).Google Scholar
  14. 14.
    USSR Inventor’s Certificate No. 1119456, Byull. Izobret., No. 34 (1992).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations