Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 4, pp 381–385 | Cite as

Study of the Interaction between Iron Oxide Nanoparticles, Produced in Acoustoplasma Discharge with Cavitation, and Blood Plasma Fibrinogen by Light Scattering Techniques

  • M. N. KirichenkoEmail author
  • L. L. Chaikov
  • S. V. Krivokhizha
  • N. A. Bulychev
  • M. A. Kazaryan
  • A. R. Zaritsky
Optical Instrumentation

Abstract

Interactions between iron oxide nanoparticles, produced in acoustoplasma discharge with cavitation, and blood plasma fibrinogen is studied in a model solution by dynamic light scattering. Depending on the storage time of the nanoparticles, their interaction with the protein shows different dynamics of the size distribution. However, the biological action of the nanoparticles is the same regardless of the storage time, i.e., they act as inhibitors of the reaction of fibrin gel formation.

Keywords

iron oxide nanoparticles acoustoplasma discharge with cavitation blood plasma fibrinogen dynamic light scattering fibrin gel formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Ilinskaya and M. Dobrovolskaia, “Nanoparticles and the blood coagulation system. Part I: Benefits of nanotechnology,” Nanomedicine 8 (5), 773–784 (2013).CrossRefGoogle Scholar
  2. 2.
    A. Ilinskaya and M. Dobrovolskaia, “Nanoparticles and the blood coagulation system. Part II: Safety concerns,” Nanomedicine 8 (6), 969–981 (2013).CrossRefGoogle Scholar
  3. 3.
    A. V. Bychkova, O. N. Sorokina, A. L. Kovarskii, V. B. Leonova, and M. A. Rozenfel’d, “Interaction between blood plasma proteins and magnetite nanoparticles,” Colloid J. 72 (5), 696–702 (2010).CrossRefGoogle Scholar
  4. 4.
    H. Zhang, P. Wu, Z. Zhu, and Y. Wang, “Interaction of γ-Fe2O3 nanoparticles with fibrinogen,” Spectrochim. Acta A, No. 151, 40–47 (2015).CrossRefGoogle Scholar
  5. 5.
    P. Canoa, R. Simon-Vazquez, J. Popplewell, and A. Gonzalez-Fernandez, “A quantitative binding study of fibrinogen and human serum albumin to metal oxide nanoparticles by surface plasmon resonance,” Biosens. Bioelectron, No. 74, 376–383 (2015).CrossRefGoogle Scholar
  6. 6.
    N. A. Bulychev, M. A. Kazaryan, L. L. Chaikov, I. S. Burkhanov, and V. I. Krasovskii, “Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 1. Method for producing particles,” Bull. Lebedev Phys. Inst. 41 (9), 264–268 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    I. S. Burkhanov, L. L. Chaikov, N. A. Bulychev, M. A. Kazaryan, and V. I. Krasovskii, “Nanoscale metal oxide particles produced in the plasma discharge in the liquid phase upon exposure to ultrasonic cavitation. 2. Size and Stability. DRS study,” Bull. Lebedev Phys. Inst. 41 (10), 39–49 (2014).CrossRefGoogle Scholar
  8. 8.
    N. A. Bulychev, M. A. Kazaryan, E. S. Gridneva, E. N. Murav’ev, V. F. Solinov, K. K. Koshelev, O.K. Kosheleva, V. I. Sachkov, and S. G. Chen, “Plasma discharge with bulk glow in the liquid phase exposed to ultrasound,” Bull. Lebedev Phys. Inst. 39 (7), 39–49 (2012).CrossRefGoogle Scholar
  9. 9.
    K. V. Kovalenko, S. V. Krivokhizha, A. V. Masalov, and L. L. Chaikov, “Correlation spectroscopy measurements of particle sizes using a light probe,” Bull. Lebedev Phys. Inst. 36 (4), 95–103 (2009).ADSCrossRefGoogle Scholar
  10. 10.
    M. N. Kirichenko, S. V. Krivokhiza, L. L. Chaikov, and N. N. Bulychev, “The influence of the sequence of nanoparticles injection to solution on the rate of fibrinogen-thrombin reaction,” J. Phys.: Conf. Ser. 784 (1), 012025–012031 (2017).Google Scholar
  11. 11.
    N. O. Fischer, C. M. McIntosh, J. M. Simard, and V. M. Rotello, “Inhibition of chymotrypsin through surface binding using nanoparticle-based receptors,” Proc. Natl. Acad. Sci. USA 99 (8), 5018–5023 (2002).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • M. N. Kirichenko
    • 1
    Email author
  • L. L. Chaikov
    • 1
  • S. V. Krivokhizha
    • 1
  • N. A. Bulychev
    • 1
    • 2
  • M. A. Kazaryan
    • 1
  • A. R. Zaritsky
    • 1
  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia
  2. 2.Moscow Aviation InstituteMoscowRussia

Personalised recommendations