Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 4, pp 410–414 | Cite as

Switching Properties of Eptron—the Nanosecond Sharpener Based on the Combination of Open and Capillary Discharges

  • P. A. BokhanEmail author
  • P. P. Gugin
  • D. E. Zakrevsky
  • M. A. Lavrukhin
Optical Sources and Receivers for Environmental Studies
  • 20 Downloads

Abstract

The switching properties of a new gas-discharge sharpener that consists of “open” and “capillary” discharges serially connected in bulk are studied. Switching times of less than 1 ns have been attained in helium in a wide range of conditions, for discharge delay times exceeding 600 ns with an initial pulse compression degree of about 103. An average power of about 10 kW has been implemented in the pulse train mode at a voltage of 20 kV and a pulse frequency of 44 kHz.

Keywords

gas discharge sharpener switching nanosecond 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. A. Mesyats, Pulsed Power and Electronics (Nauka, Moscow, 2004) [in Russian].Google Scholar
  2. 2.
    G. A. Mesyats and M. I. Yalandin, “High-power picosecond electronics,” Phys.-Uspekhi 17 (3), 225–246 (2005).Google Scholar
  3. 3.
    L. M. Merensky, A. F. Kardo-Sysoev, A. N. Flerov, A. Pokryvailo, D. Shmilovitz, and A. S. Kesar, “A lowjitter 1.8-kV 100-ps rise-time 50-kHz repetition-rate pulsed power generator,” IEEE Trans. Plasma Sci. 37 (9), 1855–1862 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    V. F. Tarasenko, Generation of Runaway Electrons and X-Rays in High-Pressure Discharges (STT, Tomsk, 2015).Google Scholar
  5. 5.
    P. A. Bokhan, P. P. Gugin, D. E. Zakrevsky, M. A. Lavrukhin, RF Patent No. 2528015, Bull. Izobret. No. 5 (2014).Google Scholar
  6. 6.
    P. A. Bokhan, P. P. Gugin, D. E. Zakrevsky, and M. A. Lavrukhin, “Switching of 100-kV pulses in a planar “open” discharge with generation of counterpropagating electron beams,” Tech. Phys. Lett. 43 (10), 928–931 (2017).ADSCrossRefGoogle Scholar
  7. 7.
    P. A. Bokhan, P. P. Gugin, D. E. Zakrevsky, and M. A. Lavrukhin, “Discharge development and minimal switching time in kivotron,” Pis’ma J. Tekh. Fiz. 42 (7), 73–80 (2016).Google Scholar
  8. 8.
    P. A. Bokhan, P. P. Gugin, D. E. Zakrevsky, and M. A. Lavrukhin, “Study of the frequency and switching characteristics of the open discharge based planar switches with counter-propagating electron beams,” Izv. Vussh. Ucheb. Zaved. Fiz. 58 (9/2), 75–78 (2015).Google Scholar
  9. 9.
    P. A. Bokhan, P. P. Gugin, D. E. Zakrevsky, and M. A. Lavrukhin, “Generation of high-voltage pulses with a subnanosecond leading edge in an open discharge. I. Design and experimental data on switching characteristics,” Tech. Phys. Rus. J. Appl. Phys. 60 (10), 1464–1471 (2015).Google Scholar
  10. 10.
    P. A. Bokhan, P. P. Gugin, D. E. Zakrevsky, and M. A. Lavrukhin, “Generation of high-voltage pulses with a subnanosecond leading edge in an open discharge. II. Switching mechanism,” Tech. Phys. Rus. J. Appl. Phys. 60 (10), 1472–1477 (2015).Google Scholar
  11. 11.
    I. V. Shveigert, A. L. Aleksandrov, P. A. Bokhan, and D. E. Zakrevsky, “Breakdown in helium in high-voltage open discharge with subnanosecond current front rise,” Plasma Phys. Rep. 42 (7), 666–677 (2016).ADSCrossRefGoogle Scholar
  12. 12.
    P. A. Bokhan, P. P. Gugin, D. E. Zakrevskii, M. A. Kazaryan, M. A. Lavrukhin, and N. A. Lyabin, “Influence of the voltage pulse front shortening on the pulse repetition rate in a copper vapour laser,” Quantum Electron. 43 (8), 715–719 (2013).ADSCrossRefGoogle Scholar
  13. 13.
    V. Gambaryan and A. Starostenko, “Fast kicker,” in Proc. of 6th International Particle Accelerator Conference IPAC, USA (2015), pp. 1001–1003.Google Scholar
  14. 14.
    V. Gambaryan and A. Starostenko, “Fast kicker for high current beam manipulation in large aperture,” in Proc. of CERN-BINP Workshop for Young Scientists in e+e-Colliders, August 22–25, 2016, Geneva, Switzerland. P.207.Google Scholar
  15. 15.
    M. M. Kekez, “Microwave generation in air and vacuum,” IEEE Trans. Plasma Sci. 45 (2), 235–246 (2017).ADSCrossRefGoogle Scholar
  16. 16.
    A. L. Aleksandrov and I. V. Shveigert, “Simulation of plasma afterglow of an open discharge in the discharge gap of a subnanosecond switch,” Fiz. Plazmy (in press).Google Scholar
  17. 17.
    A. N. Tkachev and S. I. Yakovlenko, “Mechanism of runaway electrons in a gas and criteria for ignition of an independent discharge,” Pis’ma J. Tekh. Phys. 29 (16), 54–62 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. A. Bokhan
    • 1
    Email author
  • P. P. Gugin
    • 1
  • D. E. Zakrevsky
    • 1
    • 2
  • M. A. Lavrukhin
    • 1
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations