Atmospheric and Oceanic Optics

, Volume 31, Issue 4, pp 405–409 | Cite as

Broadband Spontaneous and Stimulated Luminescence of Heavily Doped AlxGa1 – xN Structures

  • P. A. BokhanEmail author
  • K. S. Zhuravlev
  • D. E. Zakrevsky
  • T. V. Malin
  • I. V. Osinnykh
  • N. V. Fateev
Optical Sources and Receivers for Environmental Studies


The spectral characteristics of spontaneous and stimulated luminescence of heavily silicon-doped AlxGa1 – xN structures with the concentration nSi > 1020 cm–3 are studied with pulsed optical pumping at λ = 266 nm. The resulting dominant broadband radiation with a full width at half maximum of ~150 nm covers the whole visible spectral region. The radiation spectrum from the end of the structure is split into narrow components determined by the mode structure of the planar waveguide formed. The results indicate the stimulated character of the radiation. The optical gain for different structures fall in the range 20–70 cm–1.


AlxGa1–xN structures luminescence optical gain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    III-Nitride Based Light Emitting Diodes and Applications, Ed. by T.-Y. Seong, J. Han, H. Amano, and H. Morkoç (Springer, Singapore, 2013), vol.126.Google Scholar
  2. 2.
    D. Sizov, R. Bhat, and Ch.-E. J. Zah, “Gallium indium nitride-based green lasers,” J. Lightwave Technol. 30, 679–699 (2012).ADSCrossRefGoogle Scholar
  3. 3.
    M. Razeghi and M. Henini, Optoelectronic Devices: IIINitrides (Elsevier, Amsterdam, 2004).Google Scholar
  4. 4.
    Th. D. Moustakas, “Ultraviolet optoelectronic devices based on AlGaN alloys grown by molecular beam epitaxy,” MRS Commun. 6, 247–269 (2016).CrossRefGoogle Scholar
  5. 5.
    E. V. Lutsenko, N. V. Rzheutskii, V. N. Pavlovskii, G. P. Yablonskii, D. V. Nechaev, A. A. Sitnikova, V. V. Ratnikov, Ya. V. Kuznetsova, V. N. Zhmerik, and S. V. Ivanov, “Spontaneous and stimulated emission in the mid-ultraviolet range of quantum-well heterostructures based on AlGaN compounds grown by molecular beam epitaxy on c-sapphire substrates,” Phys. Solid State 55 (10), 2173–2181 (2013).ADSCrossRefGoogle Scholar
  6. 6.
    M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, Z. Yang, N. M. Johnson, and M. Weyers, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26, 014036 (2011).ADSCrossRefGoogle Scholar
  7. 7.
    S. Nakamura, S. Pearton, and G. Fasol, The Blue Laser Diode (Springer, Berlin, 2000).CrossRefGoogle Scholar
  8. 8.
    P. A. Bokhan, P. P. Gugin, Dm. E. Zakrevsky, K. S. Zhuravlev, T. V. Malin, I. V. Osinnykh, V. I. Solomonov, and A. V. Spirina, “Luminescence and superradiance in electron-beam-excited AlxGa1–xN,” J. Appl. Phys. 116, 113103 (2014).ADSCrossRefGoogle Scholar
  9. 9.
    I. V. Osinnykh, T. V. Malin, V. F. Plyusnin, A. S. Suranov, A. M. Gilinsky, and K. S. Zhuravlev, “Characterization of the green band in photoluminescence spectra of heavily doped AlxGa1–xN:Si with the Al content x > 0.5,” Jpn. J. Appl. Phys. 55, 05FG09 (2016).CrossRefGoogle Scholar
  10. 10.
    K. S. Zhuravlev, I. V. Osinnykh, D. Yu. Protasov, T. V. Malin, V. Yu. Davydov, A. N. Smirnov, R. N. Kyutt, A. V. Spirina, and V. I. Solomonov, “Characterization of MBE-grown AlGaN layers heavily doped using silane,” Phys. Status Solidi C 10, 315–318 (2013).ADSCrossRefGoogle Scholar
  11. 11.
    I. V. Osinnykh, T. V. Malin, V. F. Plyusnin, K. S. Zhuravlev, B. Ya. Ber, and D. Yu. Kazantsev, “Nature of intensive defect-related broadband luminescence of heavily doped AlxGa1–xN:Si layers,” J. Phys.: Conf. Ser. 816, 012002 (2017).Google Scholar
  12. 12.
    K. L. Shaklee, R. E. Nahory, and R. F. Leheny, “Optical gain in semiconductors,” J. Lumin. 7, 284–309 (1973).CrossRefGoogle Scholar
  13. 13.
    N. A. Sanford, L. H. Robins, A. V. Davydov, A. Shapiro, D. V. Tsvetkov, A. V. Dmitriev, S. Keller, U. K. Mishra, and S. P. DenBaars, “Refractive index study of AlxGa1–xN films grown on sapphire substrates,” J. Appl. Phys. 94, 2980–2991 (2003).ADSCrossRefGoogle Scholar
  14. 14.
    N. Antoine-Vincent, F. Natali, M. Mihailovic, D. Byrne, F. Semond, and J. Massies, Determination of the refractive indices of AlN, GaN, and AlxGa1–xN grown on (111)Si substrates,” J. Appl. Phys. 93, 5222–5226 (2003).ADSCrossRefGoogle Scholar
  15. 15.
    H. Kogelnik, “An introduction to integrated optics,” IEEE Trans. Microw. Theory Techniq. 23, 2–16 (1975).ADSCrossRefGoogle Scholar
  16. 16.
    T. V. Malin, A. M. Gilinsky, V. G. Mansurov, D. Yu. Protasov, A. S. Kozhuhov, E. B. Yakimov, and K. S. Zhuravlev, “Increase in the diffusion length of minority carriers in AlxGa1–xN alloys (x = 0–0.1) fabricated by ammonia molecular beam epitaxy,” Semiconductors 49, 1285–1289 (2015).ADSCrossRefGoogle Scholar
  17. 17.
    S. Kuck, “Laser-related spectroscopy of ion-doped crystals for tunable solid-state lasers,” Appl. Phys. B 72, 515–562 (2001).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. A. Bokhan
    • 1
    Email author
  • K. S. Zhuravlev
    • 1
  • D. E. Zakrevsky
    • 1
    • 2
  • T. V. Malin
    • 1
  • I. V. Osinnykh
    • 1
  • N. V. Fateev
    • 1
    • 3
  1. 1.Rzhanov Institute of Semiconductor Physics, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations