Skip to main content

Comparison of WRF-CHEM Chemical Transport Model Calculations with Aircraft Measurements in Norilsk

Abstract

The results of WRF-CHEM model simulation of dispersal of anthropogenic emissions from the Norilsk industrial zone are verified against data of aircraft sensing performed in August 2004. It is shown that the WRF-CHEM v3.5.1 model configuration selected adequately reproduces the meteorological parameters obtained during the 2004 measurement campaign. The model-derived distributions of the concentrations of sulfur anhydride and ozone and mass concentration of aerosol qualitatively reproduce those retrieved from data of aircraft sensing. Quantitative estimates showed that the standard errors for sulfur dioxide, PM2.5 mass concentration, and ozone, calculated for three flights, had been 23 ppb, 2.6 μg/m3, and 9.8 ppb, respectively. These discrepancies may be due to incorrect specification of the initial and boundary conditions, inaccurate specification of anthropogenic emissions, and limitations in the aerosol and chemical descriptions.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Review of the State and Pollution of the Environment in the Russian Federation for 2015 (Roshydromet, Moccow, 2016) [in Russian].

  2. 2.

    N. A. Pershina, A. I. Polishchuk, and P. F. Svistov, “On the problem of atmospheric precipitation acidification in Russian Arctic,” Proc. of Voeikov Main Geophysical Observatory, No. 558, 211–232 (2008).

    Google Scholar 

  3. 3.

    A. A. Vinogradova, L. O. Maksimenkov, and F. A. Pogarskii, “Changes of atmospheric circulation and environmental pollution in Siberia from the industry of the Norilsk and Ural regions at the begining of 2000s,” Opt. Atmos. Okeana 22 (6), 527–534 (2009).

    Google Scholar 

  4. 4.

    K. P. Koutsenogii, A. I. Smirnova, B. S. Smolyakov, and T. V. Churkina, “Estimation of the content of some components in the industrial emissions of the South Urals and Norilsk,” Atmos. Ocean. Opt. 15 (5-6), 415–418 (2002).

    Google Scholar 

  5. 5.

    V. A. Shlychkov, V. M. Malbakhov, and A. A. Lezhenin, “Numerical modeling of atmospheric circulation and pollution transport in the Norilsk valley,” Atmos. Ocean. Opt. 18 (5-6), 440–445 (2005).

    Google Scholar 

  6. 6.

    A.A. Lezhenin, V. F. Raputa, and T. V. Yaroslavtseva, “Numerical analysis of atmospheric circulation and pollution transfer in the environs of Norilsk Industrial Region,” Atmos. Ocean. Opt. 29 (6), 565–569 (2016).

    Article  Google Scholar 

  7. 7.

    D. V. Zuev and V. B. Kashkin, “Analysis of sulfur dioxide emissions above Norilsk industrial area using AURA satellite data,” Opt. Atmos. Okeana 26 (9), 793–797 (2013).

    Google Scholar 

  8. 8.

    M. A. Korets, V. A. Ryzhkova, and I. V. Danilova, “GIS-Based approaches to the assessment of the state of terrestrial ecosystems in the Norilsk Industrial Region,” Contemp. Probl. Ecol. 7 (6), 643–653 (2014).

    Article  Google Scholar 

  9. 9.

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, V. A. Pirogov, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Complex assessment of the conditions of the air basin over Norilsk industrial region. Part I. Dimensions and dynamics of the impurity column,” Atmos. Ocean. Opt. 19 (5), 393–399 (2006).

    Google Scholar 

  10. 10.

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, D. A. Pestunov, T. M. Rasskazchikova, D. V. Simonenkov, G. N. Tolmachev, and A. F. Fofonov, “Complex assessment of the conditions of the air basin over Norilsk industrial region. Part 2. Admixture balance in Norilsk region,” Atmos. Ocean. Opt. 19 (7), 557–566 (2006).

    Google Scholar 

  11. 11.

    M. Yu. Arshinov, B. D. Belan, G. A. Ivlev, O. A. Krasnov, T. M. Rasskazchikova, D. V. Simonenkov, G. N. Tolmachev, and A.V. Fofonov, “Complex assessment of the conditions of the air basin over Norilsk industrial region. Part 3. Dispersal of admixtures,” Atmos. Ocean. Opt. 19 (9), 717–723 (2006).

    Google Scholar 

  12. 12.

    V. G. Arshinova, B. D. Belan, G. A. Ivlev, T. M. Rasskazchikova, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Co mplex assessment of the conditions of the air basin over Norilsk industrial region. Part 4. Vertical stratification of contaminants,” Atmos. Ocean. Opt. 19 (10), 814–817 (2006)

    Google Scholar 

  13. 13.

    B. D. Belan, G. O. Zadde, G. A. Ivlev, O. A. Krasnov, V. A. Pirogov, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Complex assessment of the conditions of the air basin over Norilsk industrial region. Part 5. Impurities in the atmospheric boundary layer. The correspondence of air composition to hygienic norms. Recommendations,” Atmos. Ocean. Opt. 20 (2), 119–129 (2007).

    Google Scholar 

  14. 14.

    G. A. Grell, S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, “Fully coupled “online” chemistry in the WRF model," Atmos. Environ. 39 (37), 6957–6976 (2005).

    ADS  Article  Google Scholar 

  15. 15.

    F. Kuik, A. Lauer, G. Churkina, H.A.C. Denier van der Gon, D. Fenner, K. A. Mar, and T. M. Butler, “Air quality modelling in the Berlin-Brandenburg region using WRF-Chem v3.7.1: Sensitivity to resolution of model grid and input data,” Geosci. Model Dev. 9 (12), 4339–4363 (2016). doi 10.5194/gmd-9-4339-2016

    ADS  Article  Google Scholar 

  16. 16.

    K. A. Mar, N. Ojha, A. Pozzer, and T. M. Butler, “Ozone air quality simulations with WRF-Chem (V3.5.1) over Europe: Model evaluation and chemical mechanism comparison,” Geosci. Model Dev. 9 (10), 3699–3728 (2016). doi 10.5194/gmd-9-3699-2016

    ADS  Article  Google Scholar 

  17. 17.

    S. A. Abou Rafee, L. D. Martins, A. B. Kawashima, D. S. Almeida, M. V. B. Morais, R. V. A. Souza, M. B. L. Oliveira, R. A. F. Souza, A. S. S. Medeiros, V. Urbina, E. D. Freitas, S. T. Martin, and J. A. Martins, “Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: A numerical study with the WRF-Chem model,” Atmos. Chem. Phys. 17 (12), 7977–7995 (2017). doi 10.5194/acp-17-7977-2017

    ADS  Article  Google Scholar 

  18. 18.

    L. Marelle, J.-C. Raut, J. L. Thomas, K. S. Law, B. Quennehen, G. Ancellet, J. Pelon, A. Schwarzenboeck, and J. D. Fast, “Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008,” Atmos. Chem. Phys. 15 (7), 3831–3850 (2015). doi 10.5194/acp-15-3831-2015

    ADS  Article  Google Scholar 

  19. 19.

    Y. Zhang, X. Zhang, Q. Zhang, K. He, L. Wang, and F. Duan, “Application of WRF-CHEM over East Asia: Part I. Model evaluation and intercomparison with MM5/CMAQ,” Atmos. Environ. 124, Part B, 285–300 (2016).

    ADS  Article  Google Scholar 

  20. 20.

    Y. Zhang, X. Zhang, Q. Zhang, K. He, L. Wang, and F. Duan, “Application of WRF-CHEM over East Asia: Part II. Model improvement and sensitivity simulations,” Atmos. Environ. 124, Part B, 301–320 (2016).

    ADS  Article  Google Scholar 

  21. 21.

    S.-Y. Hong, J. Dudhia, and S.-H. Chen, “A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation,” Mon. Weather. Rev. 132 (1), 103–120 (2004).

    ADS  Article  Google Scholar 

  22. 22.

    E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” J. Geophys. Res.: Atmos. 102 (D14), 16663–16682 (1997).

    ADS  Article  Google Scholar 

  23. 23.

    J. Dudhia, “Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model,” J. Atmos. Sci. 46 (20), 3077–3107 (1989).

    ADS  Article  Google Scholar 

  24. 24.

    A. C. Beljaars, “The parametrization of surface fluxes in large-scale models under free convection,” Q. J. R. Meteorol. Soc. 121 (522), 255–270 (1995).

    ADS  Article  Google Scholar 

  25. 25.

    S.-Y. Hong, Y. Noh, and J. Dudhia, “A new vertical diffusion package with an explicit treatment of entrainment processes,” Mon. Weather. Rev. 134 (9), 2318–2341 (2006).

    ADS  Article  Google Scholar 

  26. 26.

    F. Chen and J. Dudhia, “Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity,” Mon. Weather. Rev. 129 (4), 569–585 (2001).

    ADS  Article  Google Scholar 

  27. 27.

    G. A. Grell and D. Devenyi, “A generalized approach to parameterizing convection combining ensemble and data assimilation techniques,” Geophys. Rev. Lett. 29 (14), 38 (2002).

    Article  Google Scholar 

  28. 28.

    W. R. Stockwell, F. Kirchner, M. Kuhn, and S. Seefeld, “A new mechanism for regional atmospheric chemistry modeling,” J. Geophys. Res.: Atmos. 102 (D22), 25847–25879 (1997).

    ADS  Article  Google Scholar 

  29. 29.

    M. Chin, R. B. Rood, S.-J. Lin, J.-F. Muller, and A.M. Thompson, “Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties,” J. Geophys. Res.: Atmos. 105 (D20), 24671–24687 (2000).

    ADS  Article  Google Scholar 

  30. 30.

    V. Damian, A. Sandu, M. Damian, F. Potra, and G. R. Carmichael, “The kinetic preprocessor KPP—a software environment for solving chemical kinetics,” Comput. Chem. Eng. 26 (11), 1567–1579 (2002).

    Article  Google Scholar 

  31. 31.

    G. Peng, What’s the difference between FNL and GFS. https://doi.org/rda.ucar.edu/datasets/ds083.2/docs/FNLvGFS.pdf. Cited January 25, 2017.

  32. 32.

    S. Saha, S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Y.-T. Hou, H.-Y. Chuang, M. Iredell, M. Ek, J. Meng, R. Yang, M. Pena, H. Dool, Q. Zhang, W. Wang, M. Chen, and E. Becker, The NCEP Climate Forecast System Version 2. https://doi.org/cfs.ncep.noaa.gov/cfsv2.info/CFSv2_paper.pdf. Cited January 25, 2017.

  33. 33.

    V. E. Zuev, B. D. Belan, D. M. Kabanov, V. K. Kovalevskii, O. Yu. Luk’yanov, V. E. Meleshkin, M. K. Mikushev, M. V. Panchenko, I. E. Penner, E. V. Pokrovskii, S.M. Sakerin, S. A. Terpugova, G. N. Tolmachev, A. G. Tumakov, V. S. Shamanaev, and A. I. Shcherbatov, “The "OPTIK-E” AN-30 aircraft-laboratory for ecological investigations,” Atmos. Ocean. Opt. 5 (10), 658–663 (1992).

    Google Scholar 

  34. 34.

    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, A. S. Kozlov, V. S. Kozlov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, A. S. Safatov, D. V. Simonenkov, G. N. Tolmachev, A. V. Fofonov, V. S. Shamanaev, and V. P. Shmargunov, “Aircraft laboratory Antonov-30 «Optik-E»: 20-year investigations of the environment,” Atmos. Ocean. Opt. 22 (10), 950–957 (2009).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. N. Antokhin.

Additional information

Original Russian Text © P.N. Antokhin, A.V. Gochakov, A.B. Kolker, A.V. Penenko, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antokhin, P.N., Gochakov, A.V., Kolker, A.B. et al. Comparison of WRF-CHEM Chemical Transport Model Calculations with Aircraft Measurements in Norilsk. Atmos Ocean Opt 31, 372–380 (2018). https://doi.org/10.1134/S1024856018040024

Download citation

Keywords

  • aircraft sensing
  • WRF-CHEM model
  • Norilsk
  • ozone
  • anthropogenic pollution