Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 4, pp 372–380 | Cite as

Comparison of WRF-CHEM Chemical Transport Model Calculations with Aircraft Measurements in Norilsk

  • P. N. Antokhin
  • A. V. Gochakov
  • A. B. Kolker
  • A. V. Penenko
Remote Sensing of Atmosphere, Hydrosphere, and Underlying Surface

Abstract

The results of WRF-CHEM model simulation of dispersal of anthropogenic emissions from the Norilsk industrial zone are verified against data of aircraft sensing performed in August 2004. It is shown that the WRF-CHEM v3.5.1 model configuration selected adequately reproduces the meteorological parameters obtained during the 2004 measurement campaign. The model-derived distributions of the concentrations of sulfur anhydride and ozone and mass concentration of aerosol qualitatively reproduce those retrieved from data of aircraft sensing. Quantitative estimates showed that the standard errors for sulfur dioxide, PM2.5 mass concentration, and ozone, calculated for three flights, had been 23 ppb, 2.6 μg/m3, and 9.8 ppb, respectively. These discrepancies may be due to incorrect specification of the initial and boundary conditions, inaccurate specification of anthropogenic emissions, and limitations in the aerosol and chemical descriptions.

Keywords

aircraft sensing WRF-CHEM model Norilsk ozone anthropogenic pollution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Review of the State and Pollution of the Environment in the Russian Federation for 2015 (Roshydromet, Moccow, 2016) [in Russian].Google Scholar
  2. 2.
    N. A. Pershina, A. I. Polishchuk, and P. F. Svistov, “On the problem of atmospheric precipitation acidification in Russian Arctic,” Proc. of Voeikov Main Geophysical Observatory, No. 558, 211–232 (2008).Google Scholar
  3. 3.
    A. A. Vinogradova, L. O. Maksimenkov, and F. A. Pogarskii, “Changes of atmospheric circulation and environmental pollution in Siberia from the industry of the Norilsk and Ural regions at the begining of 2000s,” Opt. Atmos. Okeana 22 (6), 527–534 (2009).Google Scholar
  4. 4.
    K. P. Koutsenogii, A. I. Smirnova, B. S. Smolyakov, and T. V. Churkina, “Estimation of the content of some components in the industrial emissions of the South Urals and Norilsk,” Atmos. Ocean. Opt. 15 (5-6), 415–418 (2002).Google Scholar
  5. 5.
    V. A. Shlychkov, V. M. Malbakhov, and A. A. Lezhenin, “Numerical modeling of atmospheric circulation and pollution transport in the Norilsk valley,” Atmos. Ocean. Opt. 18 (5-6), 440–445 (2005).Google Scholar
  6. 6.
    A.A. Lezhenin, V. F. Raputa, and T. V. Yaroslavtseva, “Numerical analysis of atmospheric circulation and pollution transfer in the environs of Norilsk Industrial Region,” Atmos. Ocean. Opt. 29 (6), 565–569 (2016).CrossRefGoogle Scholar
  7. 7.
    D. V. Zuev and V. B. Kashkin, “Analysis of sulfur dioxide emissions above Norilsk industrial area using AURA satellite data,” Opt. Atmos. Okeana 26 (9), 793–797 (2013).Google Scholar
  8. 8.
    M. A. Korets, V. A. Ryzhkova, and I. V. Danilova, “GIS-Based approaches to the assessment of the state of terrestrial ecosystems in the Norilsk Industrial Region,” Contemp. Probl. Ecol. 7 (6), 643–653 (2014).CrossRefGoogle Scholar
  9. 9.
    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, V. A. Pirogov, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Complex assessment of the conditions of the air basin over Norilsk industrial region. Part I. Dimensions and dynamics of the impurity column,” Atmos. Ocean. Opt. 19 (5), 393–399 (2006).Google Scholar
  10. 10.
    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, D. A. Pestunov, T. M. Rasskazchikova, D. V. Simonenkov, G. N. Tolmachev, and A. F. Fofonov, “Complex assessment of the conditions of the air basin over Norilsk industrial region. Part 2. Admixture balance in Norilsk region,” Atmos. Ocean. Opt. 19 (7), 557–566 (2006).Google Scholar
  11. 11.
    M. Yu. Arshinov, B. D. Belan, G. A. Ivlev, O. A. Krasnov, T. M. Rasskazchikova, D. V. Simonenkov, G. N. Tolmachev, and A.V. Fofonov, “Complex assessment of the conditions of the air basin over Norilsk industrial region. Part 3. Dispersal of admixtures,” Atmos. Ocean. Opt. 19 (9), 717–723 (2006).Google Scholar
  12. 12.
    V. G. Arshinova, B. D. Belan, G. A. Ivlev, T. M. Rasskazchikova, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Co mplex assessment of the conditions of the air basin over Norilsk industrial region. Part 4. Vertical stratification of contaminants,” Atmos. Ocean. Opt. 19 (10), 814–817 (2006)Google Scholar
  13. 13.
    B. D. Belan, G. O. Zadde, G. A. Ivlev, O. A. Krasnov, V. A. Pirogov, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Complex assessment of the conditions of the air basin over Norilsk industrial region. Part 5. Impurities in the atmospheric boundary layer. The correspondence of air composition to hygienic norms. Recommendations,” Atmos. Ocean. Opt. 20 (2), 119–129 (2007).Google Scholar
  14. 14.
    G. A. Grell, S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C. Skamarock, and B. Eder, “Fully coupled “online” chemistry in the WRF model," Atmos. Environ. 39 (37), 6957–6976 (2005).ADSCrossRefGoogle Scholar
  15. 15.
    F. Kuik, A. Lauer, G. Churkina, H.A.C. Denier van der Gon, D. Fenner, K. A. Mar, and T. M. Butler, “Air quality modelling in the Berlin-Brandenburg region using WRF-Chem v3.7.1: Sensitivity to resolution of model grid and input data,” Geosci. Model Dev. 9 (12), 4339–4363 (2016). doi 10.5194/gmd-9-4339-2016ADSCrossRefGoogle Scholar
  16. 16.
    K. A. Mar, N. Ojha, A. Pozzer, and T. M. Butler, “Ozone air quality simulations with WRF-Chem (V3.5.1) over Europe: Model evaluation and chemical mechanism comparison,” Geosci. Model Dev. 9 (10), 3699–3728 (2016). doi 10.5194/gmd-9-3699-2016ADSCrossRefGoogle Scholar
  17. 17.
    S. A. Abou Rafee, L. D. Martins, A. B. Kawashima, D. S. Almeida, M. V. B. Morais, R. V. A. Souza, M. B. L. Oliveira, R. A. F. Souza, A. S. S. Medeiros, V. Urbina, E. D. Freitas, S. T. Martin, and J. A. Martins, “Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: A numerical study with the WRF-Chem model,” Atmos. Chem. Phys. 17 (12), 7977–7995 (2017). doi 10.5194/acp-17-7977-2017ADSCrossRefGoogle Scholar
  18. 18.
    L. Marelle, J.-C. Raut, J. L. Thomas, K. S. Law, B. Quennehen, G. Ancellet, J. Pelon, A. Schwarzenboeck, and J. D. Fast, “Transport of anthropogenic and biomass burning aerosols from Europe to the Arctic during spring 2008,” Atmos. Chem. Phys. 15 (7), 3831–3850 (2015). doi 10.5194/acp-15-3831-2015ADSCrossRefGoogle Scholar
  19. 19.
    Y. Zhang, X. Zhang, Q. Zhang, K. He, L. Wang, and F. Duan, “Application of WRF-CHEM over East Asia: Part I. Model evaluation and intercomparison with MM5/CMAQ,” Atmos. Environ. 124, Part B, 285–300 (2016).ADSCrossRefGoogle Scholar
  20. 20.
    Y. Zhang, X. Zhang, Q. Zhang, K. He, L. Wang, and F. Duan, “Application of WRF-CHEM over East Asia: Part II. Model improvement and sensitivity simulations,” Atmos. Environ. 124, Part B, 301–320 (2016).ADSCrossRefGoogle Scholar
  21. 21.
    S.-Y. Hong, J. Dudhia, and S.-H. Chen, “A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation,” Mon. Weather. Rev. 132 (1), 103–120 (2004).ADSCrossRefGoogle Scholar
  22. 22.
    E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave,” J. Geophys. Res.: Atmos. 102 (D14), 16663–16682 (1997).ADSCrossRefGoogle Scholar
  23. 23.
    J. Dudhia, “Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model,” J. Atmos. Sci. 46 (20), 3077–3107 (1989).ADSCrossRefGoogle Scholar
  24. 24.
    A. C. Beljaars, “The parametrization of surface fluxes in large-scale models under free convection,” Q. J. R. Meteorol. Soc. 121 (522), 255–270 (1995).ADSCrossRefGoogle Scholar
  25. 25.
    S.-Y. Hong, Y. Noh, and J. Dudhia, “A new vertical diffusion package with an explicit treatment of entrainment processes,” Mon. Weather. Rev. 134 (9), 2318–2341 (2006).ADSCrossRefGoogle Scholar
  26. 26.
    F. Chen and J. Dudhia, “Coupling an advanced land surface-hydrology model with the Penn State-NCAR MM5 modeling system. Part I: Model implementation and sensitivity,” Mon. Weather. Rev. 129 (4), 569–585 (2001).ADSCrossRefGoogle Scholar
  27. 27.
    G. A. Grell and D. Devenyi, “A generalized approach to parameterizing convection combining ensemble and data assimilation techniques,” Geophys. Rev. Lett. 29 (14), 38 (2002).CrossRefGoogle Scholar
  28. 28.
    W. R. Stockwell, F. Kirchner, M. Kuhn, and S. Seefeld, “A new mechanism for regional atmospheric chemistry modeling,” J. Geophys. Res.: Atmos. 102 (D22), 25847–25879 (1997).ADSCrossRefGoogle Scholar
  29. 29.
    M. Chin, R. B. Rood, S.-J. Lin, J.-F. Muller, and A.M. Thompson, “Atmospheric sulfur cycle simulated in the global model GOCART: Model description and global properties,” J. Geophys. Res.: Atmos. 105 (D20), 24671–24687 (2000).ADSCrossRefGoogle Scholar
  30. 30.
    V. Damian, A. Sandu, M. Damian, F. Potra, and G. R. Carmichael, “The kinetic preprocessor KPP—a software environment for solving chemical kinetics,” Comput. Chem. Eng. 26 (11), 1567–1579 (2002).CrossRefGoogle Scholar
  31. 31.
    G. Peng, What’s the difference between FNL and GFS. https://doi.org/rda.ucar.edu/datasets/ds083.2/docs/FNLvGFS.pdf. Cited January 25, 2017.
  32. 32.
    S. Saha, S. Moorthi, X. Wu, J. Wang, S. Nadiga, P. Tripp, D. Behringer, Y.-T. Hou, H.-Y. Chuang, M. Iredell, M. Ek, J. Meng, R. Yang, M. Pena, H. Dool, Q. Zhang, W. Wang, M. Chen, and E. Becker, The NCEP Climate Forecast System Version 2. https://doi.org/cfs.ncep.noaa.gov/cfsv2.info/CFSv2_paper.pdf. Cited January 25, 2017.
  33. 33.
    V. E. Zuev, B. D. Belan, D. M. Kabanov, V. K. Kovalevskii, O. Yu. Luk’yanov, V. E. Meleshkin, M. K. Mikushev, M. V. Panchenko, I. E. Penner, E. V. Pokrovskii, S.M. Sakerin, S. A. Terpugova, G. N. Tolmachev, A. G. Tumakov, V. S. Shamanaev, and A. I. Shcherbatov, “The "OPTIK-E” AN-30 aircraft-laboratory for ecological investigations,” Atmos. Ocean. Opt. 5 (10), 658–663 (1992).Google Scholar
  34. 34.
    M. Yu. Arshinov, B. D. Belan, D. K. Davydov, G. A. Ivlev, A. S. Kozlov, V. S. Kozlov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, A. S. Safatov, D. V. Simonenkov, G. N. Tolmachev, A. V. Fofonov, V. S. Shamanaev, and V. P. Shmargunov, “Aircraft laboratory Antonov-30 «Optik-E»: 20-year investigations of the environment,” Atmos. Ocean. Opt. 22 (10), 950–957 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • P. N. Antokhin
    • 1
  • A. V. Gochakov
    • 2
  • A. B. Kolker
    • 2
  • A. V. Penenko
    • 3
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Siberian Regional Hydrometeorological Research InstituteNovosibirskRussia
  3. 3.Institute of Computational Mathematics and Mathematical Geophysics, Siberian BranchRussian Academy of SciencesNovosibirskRussia

Personalised recommendations