Skip to main content
Log in

Absorption Coefficient Spectrum and Intracellular Pigment Concentration by an Example of Spirulina platensis

  • Optics of Clusters, Aerosols, and Hydrosoles
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

In this work, an explicit analytical estimate of the absorption cross section of homogenous weakly refracting nonspherical particles and their suspensions is considered and justified. By an example of Spirulina platensis, a way of estimating the spectrum of pigment absorption coefficients in the region of photosynthetically active radiation has been implemented without the use of pigment extracts. The effect of the cell size and shape distribution on absorption spectra is studied. The intracellular concentration of chlorophyll a, phycoerythrin, and phycocyanin is estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Morel, “Light and marine photosynthesis: A spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).

    Article  ADS  Google Scholar 

  2. T. Platt and S. Sathyendranath, “Oceanic primary production: Estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).

    Article  ADS  Google Scholar 

  3. A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).

    Article  ADS  Google Scholar 

  4. S. Sathyendranath, G. Cota, V. Stuart, H. Maass, and T. Platt, “Remote sensing of phytoplankton pigments: A comparison of empirical and theoretical approaches,” Int. J. Remote Sens. 22, 249–273 (2001).

    Article  ADS  Google Scholar 

  5. D. Ficek, S. Kaczmarek, J. Ston-Egiert, B. Wozniak, R. Majchrowski, and J. Dera, “Spectra of light absorption by phytoplankton pigments in the Baltic: Conclusions to be drawn from a Gaussian analysis of empirical data,” Oceanologia 46, 533–555 (2004).

    Google Scholar 

  6. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (University Press, Cambridge, 2011), 3rd ed.

    Google Scholar 

  7. L. M. N. Duysens, “The flattening effect of the absorption spectra of suspensions as compared to that of solutions,” Biochim. Biophys. Acta 19, 1–12 (1956).

    Article  Google Scholar 

  8. N. Hoepffner and S. Sathyendranath, “Effect of pigment composition on absorption properties of phytoplankton,” Mar. Ecol.: Prog. Ser. 73, 11–23 (1991).

    Article  ADS  Google Scholar 

  9. S. G. H. Simis and H. M. Kauko, “In vivo mass-specific absorption spectra of phycobilipigments through selective bleaching,” Limnol. Oceanogr.: Methods 10, 214–226 (2012).

    Article  Google Scholar 

  10. L. E. Paramonov, E. B. Khromechek, V. V. Abdulkin, and V. A. Shmidt, “Solving the inverse problems on equivalent classes,” Atmos. Ocean. Opt. 17 (5-6), 453–457 (2004).

    Google Scholar 

  11. H. C. van de Hulst, Light Scattering by Small Particles (Wiley and Sons, New York; Chapman and Hall, London, 1957).

    Google Scholar 

  12. K.S. Shifrin and G. Tonna, “Simple equation for the absorption coefficient of weakly-refracting particles,” Opt. Spektrosk. 72, 487–490 (1992).

    Google Scholar 

  13. L. E. Paramonov, “Optical equivalence of isotropic ensembles of ellipsoidal particles in the Rayleigh–Gans–Debye and anomalous diffraction approximations and its consequences,” Opt. Spectrosc. 112 (5), 787–795 (2012).

    Article  ADS  Google Scholar 

  14. P. C. Waterman, “Symmetry, unitarity and geometry in electromagnetic scattering,” Phys. Rev., D 3, 825–839 (1970).

    Article  ADS  Google Scholar 

  15. L. E. Paramonov, “T-matrix approach and the angular momentum theory in light-scattering problems by ensembles of arbitrarily shaped particles,” J. Opt. Soc. Am., A 12, 2698–2707 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  16. J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. III. Cylindrical and spheroidal cells,” New Phytol. 77 (2), 341–358 (1976).

    Article  Google Scholar 

  17. F. I. Kuzminov, E. A. Shirshin, M. Yu. Gorbunov, and V. V. Fadeev, “New optical approaches in studying photophysiological parameters of cyanobacteria in situ,” Fundam. Prikl. Gidrofiz. 8 (1), 41–47 (2015).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. E. Paramonov.

Additional information

Original Russian Text © L.E. Paramonov, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paramonov, L.E. Absorption Coefficient Spectrum and Intracellular Pigment Concentration by an Example of Spirulina platensis. Atmos Ocean Opt 31, 263–268 (2018). https://doi.org/10.1134/S1024856018030107

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856018030107

Keywords

Navigation