Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 3, pp 263–268 | Cite as

Absorption Coefficient Spectrum and Intracellular Pigment Concentration by an Example of Spirulina platensis

  • L. E. Paramonov
Optics of Clusters, Aerosols, and Hydrosoles
  • 12 Downloads

Abstract

In this work, an explicit analytical estimate of the absorption cross section of homogenous weakly refracting nonspherical particles and their suspensions is considered and justified. By an example of Spirulina platensis, a way of estimating the spectrum of pigment absorption coefficients in the region of photosynthetically active radiation has been implemented without the use of pigment extracts. The effect of the cell size and shape distribution on absorption spectra is studied. The intracellular concentration of chlorophyll a, phycoerythrin, and phycocyanin is estimated.

Keywords

spectrum of absorption coefficients Spirulina platensis intracellular concentration of pigments chlorophyll a phycocyanin phycoerythrin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Morel, “Light and marine photosynthesis: A spectral model with geochemical and climatological implications,” Prog. Oceanogr. 26, 263–306 (1991).ADSCrossRefGoogle Scholar
  2. 2.
    T. Platt and S. Sathyendranath, “Oceanic primary production: Estimation by remote sensing at local and regional scales,” Science 241, 1613–1620 (1988).ADSCrossRefGoogle Scholar
  3. 3.
    A. Bricaud, A. Morel, M. Babin, K. Allali, and H. Claustre, “Variations of light absorption by suspended particles with chlorophyll a concentration in oceanic (case 1) waters: Analysis and implications for bio-optical models,” J. Geophys. Res. 103, 31033–31044 (1998).ADSCrossRefGoogle Scholar
  4. 4.
    S. Sathyendranath, G. Cota, V. Stuart, H. Maass, and T. Platt, “Remote sensing of phytoplankton pigments: A comparison of empirical and theoretical approaches,” Int. J. Remote Sens. 22, 249–273 (2001).ADSCrossRefGoogle Scholar
  5. 5.
    D. Ficek, S. Kaczmarek, J. Ston-Egiert, B. Wozniak, R. Majchrowski, and J. Dera, “Spectra of light absorption by phytoplankton pigments in the Baltic: Conclusions to be drawn from a Gaussian analysis of empirical data,” Oceanologia 46, 533–555 (2004).Google Scholar
  6. 6.
    J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (University Press, Cambridge, 2011), 3rd ed.Google Scholar
  7. 7.
    L. M. N. Duysens, “The flattening effect of the absorption spectra of suspensions as compared to that of solutions,” Biochim. Biophys. Acta 19, 1–12 (1956).CrossRefGoogle Scholar
  8. 8.
    N. Hoepffner and S. Sathyendranath, “Effect of pigment composition on absorption properties of phytoplankton,” Mar. Ecol.: Prog. Ser. 73, 11–23 (1991).ADSCrossRefGoogle Scholar
  9. 9.
    S. G. H. Simis and H. M. Kauko, “In vivo mass-specific absorption spectra of phycobilipigments through selective bleaching,” Limnol. Oceanogr.: Methods 10, 214–226 (2012).CrossRefGoogle Scholar
  10. 10.
    L. E. Paramonov, E. B. Khromechek, V. V. Abdulkin, and V. A. Shmidt, “Solving the inverse problems on equivalent classes,” Atmos. Ocean. Opt. 17 (5-6), 453–457 (2004).Google Scholar
  11. 11.
    H. C. van de Hulst, Light Scattering by Small Particles (Wiley and Sons, New York; Chapman and Hall, London, 1957).Google Scholar
  12. 12.
    K.S. Shifrin and G. Tonna, “Simple equation for the absorption coefficient of weakly-refracting particles,” Opt. Spektrosk. 72, 487–490 (1992).Google Scholar
  13. 13.
    L. E. Paramonov, “Optical equivalence of isotropic ensembles of ellipsoidal particles in the Rayleigh–Gans–Debye and anomalous diffraction approximations and its consequences,” Opt. Spectrosc. 112 (5), 787–795 (2012).ADSCrossRefGoogle Scholar
  14. 14.
    P. C. Waterman, “Symmetry, unitarity and geometry in electromagnetic scattering,” Phys. Rev., D 3, 825–839 (1970).ADSCrossRefGoogle Scholar
  15. 15.
    L. E. Paramonov, “T-matrix approach and the angular momentum theory in light-scattering problems by ensembles of arbitrarily shaped particles,” J. Opt. Soc. Am., A 12, 2698–2707 (1995).ADSMathSciNetCrossRefGoogle Scholar
  16. 16.
    J. T. O. Kirk, “A theoretical analysis of the contribution of algal cells to the attenuation of light within natural waters. III. Cylindrical and spheroidal cells,” New Phytol. 77 (2), 341–358 (1976).CrossRefGoogle Scholar
  17. 17.
    F. I. Kuzminov, E. A. Shirshin, M. Yu. Gorbunov, and V. V. Fadeev, “New optical approaches in studying photophysiological parameters of cyanobacteria in situ,” Fundam. Prikl. Gidrofiz. 8 (1), 41–47 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Shirshov Oceanology Institute, Southern BranchRussian Academy of SciencesGelendzhikRussia

Personalised recommendations