Skip to main content

Estimation of Direct Radiative Effects of Background and Smoke Aerosol in the IR Spectral Region for Siberian Summer Conditions

Abstract

We present estimates of direct radiative effects (DRE) for background and smoke aerosol in the IR spectral region. The estimates are obtained using an original Monte Carlo algorithm and OPAC models for typical summer conditions and smoke haze conditions on the territory of Siberia in 2012. It is shown that the DRE value at the atmospheric boundaries in the thermal spectral region is approximately 3% of the daily mean radiation effect in the solar spectral region under background conditions, and 10–15% under conditions of strong turbidity.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. Myhre, D. Shindell, F.-M. Breon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, and H. Zhang, “Anthropogenic and natural radiative forcing,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Doschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Cambridge University Press, Cambridge, UK; New York, 2014). doi 10.1017/CBO9781107415324.018

    Google Scholar 

  2. 2.

    T. Claquin, M. Schulz, Y. Balkanski, and O. Boucher, “Uncertainties in assessing radiative forcing by mineral dust,” Tellus. 50, 491–505 (1998). doi 10.1034/j.1600- 0889.1998.t01-2-00007.x

    Article  Google Scholar 

  3. 3.

    R. L. Miller, I. Tegen, and J. Perlwitz, “Surface radiative forcing by soil dust aerosols and the hydrologic cycle,” J. Geophys. Res. 109, D04203 (2004). doi 10.1029/2003JD004085

    ADS  Google Scholar 

  4. 4.

    C. Ritter, J. Notholt, J. Fischer, and C. Rathke, “Direct thermal radiative forcing of tropospheric aerosol in the Arctic measured by ground based infrared spectrometry,” Geophys. Res. Lett. 32, L23816 (2005). doi 10.1029/2005GL024331

    ADS  Article  Google Scholar 

  5. 5.

    S. Dey and S. N. Tripathi, “Aerosol direct radiative effects over Kanpur in the Indo-Gangetic basin, northern India: Long-term (2001–2005) observations and implications to regional climate,” J. Geophys. Res. 113, D04212 (2008). doi 10.1029/2007JD009029

    ADS  Google Scholar 

  6. 6.

    A. M. Vogelmann, P. J. Flatau, M. Szczodrak, K. M. Markowicz, and P. J. Minnett, “Observations of large aerosol infrared forcing at the surface,” Geophys. Res. Lett. 30 (12), 1655 (2003). doi 10.1029/2002GL016829

    ADS  Article  Google Scholar 

  7. 7.

    K. Markowicz, P. J. Flatau, A. M. Vogelmann, P. K. Quinn, and E. J. Welton, “Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere,” Q. J. R. Meteorol. Soc. 129, 2927–2947 (2003).

    ADS  Article  Google Scholar 

  8. 8.

    R. A. Hansell, S. C. Tsay, Q. Ji, N. C. Hsu, M. J. Jeong, S. H. Wang, J. S. Reid, K. N. Liou, and S. C. Ou, “An assessment of the surface longwave direct radiative effect of airborne Saharan dust during the NAMMA field campaign,” J. Atmos. Sci. 67, 1048–1065 (2010).

    ADS  Article  Google Scholar 

  9. 9.

    M. Sicard, S. Bertolin, C. Munoz, A. Rodriguez, F. Rocadenbosch, and A. Comeron, “Separation of aerosol fine- and coarse-mode radiative properties: Effect on the mineral dust longwave, direct radiative forcing,” Geophys. Res. Lett. 41 (19), 6978–6985 (2014). doi 10.1002/2014GL060946

    ADS  Article  Google Scholar 

  10. 10.

    I. A. Gorchakova, I. I. Mokhov, and A. N. Rublev, “Effect of aerosol on the clear-sky radiation regime as derived from Zvenigorod aerosol-cloud-radiation experiments,” Izv., Atmos. Ocean. Phys. 41 (4), 448–460 (2005).

    Google Scholar 

  11. 11.

    A. S. Panicker, G. Pandithurai, P. D. Safai, and S. Kewat, “Observations of enhanced aerosol longwave radiative forcing over an urban environment,” Geophys. Res. Lett. 35 (4), L04817 (2008). doi 10.1029/2007GL032879

    ADS  Article  Google Scholar 

  12. 12.

    T. B. Zhuravleva, D. M. Kabanov, I. M. Nasrtdinov, T. V. Russkova, S. M. Sakerin, A. Smirnov, and B. N. Holben, “Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012,” Atmos. Meas. Tech. 10, 179–198 (2017). doi 10.5194/amt-10-179-2017

    Article  Google Scholar 

  13. 13.

    T. B. Zhuravleva, M. V. Panchenko, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Model estimates of dynamics of the vertical structure of solar absorption and temperature effects under background conditions and in an extremely smoke-laden atmosphere according to data of aircraft observations,” Atmos. Ocean. Opt. 31 (1), 25–30 (2018).

    Article  Google Scholar 

  14. 14.

    M. V. Panchenko, T. B. Zhuravleva, S. A. Terpugova, V. V. Polkin, and V. S. Kozlov, “An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer,” Atmos. Meas. Tech. 5 (7), 1513–1527 (2012).

    Article  Google Scholar 

  15. 15.

    M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).

    ADS  Article  Google Scholar 

  16. 16.

    A. Berk, L. S. Bernstein, and D. C. Robertson, MODTRAN: A Moderate Resolution Model for LOWTRAN7 (Geophysics Directorate, Phillips Laboratory, Hanscom, 1989).

    Google Scholar 

  17. 17.

    B. Mayer and A. Kylling, “Technical note: The libRadtran software package for radiative transfer calculations: Description and examples of use,” Atmos. Chem. Phys. 5, 1855–1877 (2005).

    ADS  Article  Google Scholar 

  18. 18.

    B. A. Fomin, “Monte-Carlo algorithm for line-by-line calculations of thermal radiation in multiple scattering layered atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 98, 107–115 (2006).

    ADS  Article  Google Scholar 

  19. 19.

    J. M. Edwards and A. Slingo, “Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model,” Q. J. R. Meteorol. Soc. 122, 689–719 (1996).

    ADS  Article  Google Scholar 

  20. 20.

    D. Lubin, S.-K. Satheesh, G. McFarquhar, and A. J. Heymsfield, “Longwave radiative forcing of Indian Ocean tropospheric aerosol,” J. Geophys. Res. D 107 (19), 2156–2202 (2002). doi 10.1029/2001JD001183

    Google Scholar 

  21. 21.

    World Climate Program: 1986, A preliminary cloudless standard atmosphere for radiation computation (WMO, Genewa, Switzerland, 1986).

  22. 22.

    D. D. Turner, “Ground-based infrared retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel,” J. Geophys. Res. 113, E03 (2008). doi 10.1029/2008JD010054

    Article  Google Scholar 

  23. 23.

    T. B. Zhuravleva, D. M. Kabanov, S. M. Sakerin, and K. M. Firsov, “Simulation of aerosol direct radiative forsing under typical summer conditions of Siberia. Part 1. Method of calculation and choice of input parameters,” Atmos. Ocean. Opt. 22 (1), 63–73 (2009).

    Article  Google Scholar 

  24. 24.

    T. B. Zhuravleva, I. M. Nasrtdinov, T. Yu. Chesnokova, and A. N. Duchko, “Simulation go longwave radiation flows considering scattering: Comparison of algorithms,” in Proc. of the XXII Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2016). https://doi.org/symp.iao.ru/files/symp/aoo/22/Section%20A.pdf. Cited September 10, 2017.

    Google Scholar 

  25. 25.

    AFGL Atmospheric Constituent Profiles (0–120 km). Environmental Research Paper N 954, Ed. by G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle (Air Force Geophysics Laboratory, 1986).

    Google Scholar 

  26. 26.

    I. Morino, O. Uchino, M. Inoue, Y. Yoshida, T. Yokota, P. O. Wennberg, G. C. Toon, D. Wunch, C. M. Roehl, J. Notholt, T. Warneke, J. Messerschmidt, D. W. T. Griffith, N. M. Deutscher, V. Sherlock, B. Connor, J. Robinson, R. Sussmann, and M. Rettinger, “Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra,” Atmos. Meas. Tech. Discuss. 3, 5613–5643 (2010).

    Article  Google Scholar 

  27. 27.

    T. Yu. Chesnokova, A. V. Chentsov, N. V. Rokotyan, and V. I. Zakharov, “Impact of difference in absorption line parameters in spectroscopic databases on CO2 and CH4 atmospheric content retrievals,” J. Mol. Spectrosc. 327, 171–179 (2016). doi 10.1016/j.jms.2016.07.001

    ADS  Article  Google Scholar 

  28. 28.

    T. Sivasakthivel and K. K. Siva Kumar Reddy, “Ozone layer depletion and its effects: A review,” Int. J. Environ. Sci. Dev. 2 (1), 30–37 (2011).

    Google Scholar 

  29. 29.

    P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Cambridge University Press, Cambridge, UK; New York, 2007).

    Google Scholar 

  30. 30.

    ASTER Spectral Library. Version 1.2. https://doi.org/speclib.jpl.nasa.gov. Cited February 17, 2017.

  31. 31.

    J.-L. Dufresne, C. Gautier, P. Ricchiazzi, and Y. Fouquart, “Longwave scattering effects of mineral aerosols,” J. Atmos. Sci. 59, 1959–1966 (2002).

    ADS  Article  Google Scholar 

  32. 32.

    A. K. Mishra, I. Koren, and Y. Rudich, “Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect,” Heliyon 1 (2), e00036 (2015).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to I. M. Nasrtdinov.

Additional information

Original Russian Text © I.M. Nasrtdinov, T.B. Zhuravleva, T.Yu. Chesnokova, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nasrtdinov, I.M., Zhuravleva, T.B. & Chesnokova, T.Y. Estimation of Direct Radiative Effects of Background and Smoke Aerosol in the IR Spectral Region for Siberian Summer Conditions. Atmos Ocean Opt 31, 317–323 (2018). https://doi.org/10.1134/S1024856018030090

Download citation

Keywords

  • numerical simulation
  • OPAC models
  • direct radiation effect
  • background and smoke aerosol
  • IR spectral region