Atmospheric and Oceanic Optics

, Volume 31, Issue 3, pp 317–323 | Cite as

Estimation of Direct Radiative Effects of Background and Smoke Aerosol in the IR Spectral Region for Siberian Summer Conditions

  • I. M. NasrtdinovEmail author
  • T. B. Zhuravleva
  • T. Yu. Chesnokova
Atmospheric Radiation, Optical Weather, and Climate


We present estimates of direct radiative effects (DRE) for background and smoke aerosol in the IR spectral region. The estimates are obtained using an original Monte Carlo algorithm and OPAC models for typical summer conditions and smoke haze conditions on the territory of Siberia in 2012. It is shown that the DRE value at the atmospheric boundaries in the thermal spectral region is approximately 3% of the daily mean radiation effect in the solar spectral region under background conditions, and 10–15% under conditions of strong turbidity.


numerical simulation OPAC models direct radiation effect background and smoke aerosol IR spectral region 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Myhre, D. Shindell, F.-M. Breon, W. Collins, J. Fuglestvedt, J. Huang, D. Koch, J.-F. Lamarque, D. Lee, B. Mendoza, T. Nakajima, A. Robock, G. Stephens, T. Takemura, and H. Zhang, “Anthropogenic and natural radiative forcing,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T.F. Stocker, D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Doschung, A. Nauels, Y. Xia, V. Bex, and P.M. Midgley (Cambridge University Press, Cambridge, UK; New York, 2014). doi 10.1017/CBO9781107415324.018Google Scholar
  2. 2.
    T. Claquin, M. Schulz, Y. Balkanski, and O. Boucher, “Uncertainties in assessing radiative forcing by mineral dust,” Tellus. 50, 491–505 (1998). doi 10.1034/j.1600- 0889.1998.t01-2-00007.xCrossRefGoogle Scholar
  3. 3.
    R. L. Miller, I. Tegen, and J. Perlwitz, “Surface radiative forcing by soil dust aerosols and the hydrologic cycle,” J. Geophys. Res. 109, D04203 (2004). doi 10.1029/2003JD004085ADSGoogle Scholar
  4. 4.
    C. Ritter, J. Notholt, J. Fischer, and C. Rathke, “Direct thermal radiative forcing of tropospheric aerosol in the Arctic measured by ground based infrared spectrometry,” Geophys. Res. Lett. 32, L23816 (2005). doi 10.1029/2005GL024331ADSCrossRefGoogle Scholar
  5. 5.
    S. Dey and S. N. Tripathi, “Aerosol direct radiative effects over Kanpur in the Indo-Gangetic basin, northern India: Long-term (2001–2005) observations and implications to regional climate,” J. Geophys. Res. 113, D04212 (2008). doi 10.1029/2007JD009029ADSGoogle Scholar
  6. 6.
    A. M. Vogelmann, P. J. Flatau, M. Szczodrak, K. M. Markowicz, and P. J. Minnett, “Observations of large aerosol infrared forcing at the surface,” Geophys. Res. Lett. 30 (12), 1655 (2003). doi 10.1029/2002GL016829ADSCrossRefGoogle Scholar
  7. 7.
    K. Markowicz, P. J. Flatau, A. M. Vogelmann, P. K. Quinn, and E. J. Welton, “Clear-sky infrared aerosol radiative forcing at the surface and the top of the atmosphere,” Q. J. R. Meteorol. Soc. 129, 2927–2947 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    R. A. Hansell, S. C. Tsay, Q. Ji, N. C. Hsu, M. J. Jeong, S. H. Wang, J. S. Reid, K. N. Liou, and S. C. Ou, “An assessment of the surface longwave direct radiative effect of airborne Saharan dust during the NAMMA field campaign,” J. Atmos. Sci. 67, 1048–1065 (2010).ADSCrossRefGoogle Scholar
  9. 9.
    M. Sicard, S. Bertolin, C. Munoz, A. Rodriguez, F. Rocadenbosch, and A. Comeron, “Separation of aerosol fine- and coarse-mode radiative properties: Effect on the mineral dust longwave, direct radiative forcing,” Geophys. Res. Lett. 41 (19), 6978–6985 (2014). doi 10.1002/2014GL060946ADSCrossRefGoogle Scholar
  10. 10.
    I. A. Gorchakova, I. I. Mokhov, and A. N. Rublev, “Effect of aerosol on the clear-sky radiation regime as derived from Zvenigorod aerosol-cloud-radiation experiments,” Izv., Atmos. Ocean. Phys. 41 (4), 448–460 (2005).Google Scholar
  11. 11.
    A. S. Panicker, G. Pandithurai, P. D. Safai, and S. Kewat, “Observations of enhanced aerosol longwave radiative forcing over an urban environment,” Geophys. Res. Lett. 35 (4), L04817 (2008). doi 10.1029/2007GL032879ADSCrossRefGoogle Scholar
  12. 12.
    T. B. Zhuravleva, D. M. Kabanov, I. M. Nasrtdinov, T. V. Russkova, S. M. Sakerin, A. Smirnov, and B. N. Holben, “Radiative characteristics of aerosol during extreme fire event over Siberia in summer 2012,” Atmos. Meas. Tech. 10, 179–198 (2017). doi 10.5194/amt-10-179-2017CrossRefGoogle Scholar
  13. 13.
    T. B. Zhuravleva, M. V. Panchenko, V. S. Kozlov, I. M. Nasrtdinov, V. V. Pol’kin, S. A. Terpugova, and D. G. Chernov, “Model estimates of dynamics of the vertical structure of solar absorption and temperature effects under background conditions and in an extremely smoke-laden atmosphere according to data of aircraft observations,” Atmos. Ocean. Opt. 31 (1), 25–30 (2018).CrossRefGoogle Scholar
  14. 14.
    M. V. Panchenko, T. B. Zhuravleva, S. A. Terpugova, V. V. Polkin, and V. S. Kozlov, “An empirical model of optical and radiative characteristics of the tropospheric aerosol over West Siberia in summer,” Atmos. Meas. Tech. 5 (7), 1513–1527 (2012).CrossRefGoogle Scholar
  15. 15.
    M. Hess, P. Koepke, and I. Schult, “Optical properties of aerosols and clouds: The software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).ADSCrossRefGoogle Scholar
  16. 16.
    A. Berk, L. S. Bernstein, and D. C. Robertson, MODTRAN: A Moderate Resolution Model for LOWTRAN7 (Geophysics Directorate, Phillips Laboratory, Hanscom, 1989).Google Scholar
  17. 17.
    B. Mayer and A. Kylling, “Technical note: The libRadtran software package for radiative transfer calculations: Description and examples of use,” Atmos. Chem. Phys. 5, 1855–1877 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    B. A. Fomin, “Monte-Carlo algorithm for line-by-line calculations of thermal radiation in multiple scattering layered atmosphere,” J. Quant. Spectrosc. Radiat. Transfer 98, 107–115 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    J. M. Edwards and A. Slingo, “Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model,” Q. J. R. Meteorol. Soc. 122, 689–719 (1996).ADSCrossRefGoogle Scholar
  20. 20.
    D. Lubin, S.-K. Satheesh, G. McFarquhar, and A. J. Heymsfield, “Longwave radiative forcing of Indian Ocean tropospheric aerosol,” J. Geophys. Res. D 107 (19), 2156–2202 (2002). doi 10.1029/2001JD001183Google Scholar
  21. 21.
    World Climate Program: 1986, A preliminary cloudless standard atmosphere for radiation computation (WMO, Genewa, Switzerland, 1986).Google Scholar
  22. 22.
    D. D. Turner, “Ground-based infrared retrievals of optical depth, effective radius, and composition of airborne mineral dust above the Sahel,” J. Geophys. Res. 113, E03 (2008). doi 10.1029/2008JD010054CrossRefGoogle Scholar
  23. 23.
    T. B. Zhuravleva, D. M. Kabanov, S. M. Sakerin, and K. M. Firsov, “Simulation of aerosol direct radiative forsing under typical summer conditions of Siberia. Part 1. Method of calculation and choice of input parameters,” Atmos. Ocean. Opt. 22 (1), 63–73 (2009).CrossRefGoogle Scholar
  24. 24.
    T. B. Zhuravleva, I. M. Nasrtdinov, T. Yu. Chesnokova, and A. N. Duchko, “Simulation go longwave radiation flows considering scattering: Comparison of algorithms,” in Proc. of the XXII Intern. Symp. “Atmospheric and Ocean Optics. Atmospheric Physics” (Publishing House of IAO SB RAS, Tomsk, 2016). Cited September 10, 2017.Google Scholar
  25. 25.
    AFGL Atmospheric Constituent Profiles (0–120 km). Environmental Research Paper N 954, Ed. by G. Anderson, S. Clough, F. Kneizys, J. Chetwynd, and E. Shettle (Air Force Geophysics Laboratory, 1986).Google Scholar
  26. 26.
    I. Morino, O. Uchino, M. Inoue, Y. Yoshida, T. Yokota, P. O. Wennberg, G. C. Toon, D. Wunch, C. M. Roehl, J. Notholt, T. Warneke, J. Messerschmidt, D. W. T. Griffith, N. M. Deutscher, V. Sherlock, B. Connor, J. Robinson, R. Sussmann, and M. Rettinger, “Preliminary validation of column-averaged volume mixing ratios of carbon dioxide and methane retrieved from GOSAT short-wavelength infrared spectra,” Atmos. Meas. Tech. Discuss. 3, 5613–5643 (2010).CrossRefGoogle Scholar
  27. 27.
    T. Yu. Chesnokova, A. V. Chentsov, N. V. Rokotyan, and V. I. Zakharov, “Impact of difference in absorption line parameters in spectroscopic databases on CO2 and CH4 atmospheric content retrievals,” J. Mol. Spectrosc. 327, 171–179 (2016). doi 10.1016/j.jms.2016.07.001ADSCrossRefGoogle Scholar
  28. 28.
    T. Sivasakthivel and K. K. Siva Kumar Reddy, “Ozone layer depletion and its effects: A review,” Int. J. Environ. Sci. Dev. 2 (1), 30–37 (2011).Google Scholar
  29. 29.
    P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D. W. Fahey, J. Haywood, J. Lean, D. C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, “Changes in atmospheric constituents and in radiative forcing,” in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Cambridge University Press, Cambridge, UK; New York, 2007).Google Scholar
  30. 30.
    ASTER Spectral Library. Version 1.2. Cited February 17, 2017.
  31. 31.
    J.-L. Dufresne, C. Gautier, P. Ricchiazzi, and Y. Fouquart, “Longwave scattering effects of mineral aerosols,” J. Atmos. Sci. 59, 1959–1966 (2002).ADSCrossRefGoogle Scholar
  32. 32.
    A. K. Mishra, I. Koren, and Y. Rudich, “Effect of aerosol vertical distribution on aerosol-radiation interaction: A theoretical prospect,” Heliyon 1 (2), e00036 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • I. M. Nasrtdinov
    • 1
    Email author
  • T. B. Zhuravleva
    • 1
  • T. Yu. Chesnokova
    • 1
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of ScienceTomskRussia

Personalised recommendations