Atmospheric and Oceanic Optics

, Volume 31, Issue 3, pp 243–249 | Cite as

Variability of Soot and Fine Aerosol in the Moscow Region in 2014–2016

  • V. M. KopeikinEmail author
  • A. S. Emilenko
  • A. A. Isakov
  • O. V. Loskutova
  • T. Ya. Ponomareva
Optics of Clusters, Aerosols, and Hydrosoles


Results of measurements of the soot and fine aerosol mass concentration in the center of Moscow and at two points of the Zvenigorod Scientific Site (ZSS) in the spring–autumn periods of 2014–2016 are presented. The results are compared with data of complex measurements made during 1989–2013. Events where the increase in atmospheric air pollution by smokes from burning peat bogs in Bryansk oblast and smoke from burning trees infested by bark beetles in forests in Moscow region, as well as by forest fire smoke coming from Siberia, have been identified. The considerable increase in vehicle density during past 25 years near the ZSS measurement point located 150 m from a highway led to an increase in the level of air contamination by aerosol components by two or three times. At the second point, 1 km from the highway, the soot contamination level is comparable with data obtained in the 1990s and is approximately a third as high as in Moscow.


BC and fine aerosol smoke aerosol aerosol mass concentration pollution of the atmosphere 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. S. Golitsyn, E. I. Grechko, A. V. Dzhola, A. S. Emilenko, V. M. Kopeikin, V. S. Rakitin, A. N. Safronov, E. V. Fokeeva, G. Wang, and P. Wang, “Studying the pollution of Moscow and Beijing atmospheres with carbon monoxide and aerosol,” Izv., Atmos. Ocean. Phys. 51 (1), 1–11. 2015CrossRefGoogle Scholar
  2. 2.
    J. M. Dasch and S. H. Cadle, “Atmospheric carbon particles in Detroit urban area: Wintertime source and sinks,” Aerosol Sci. Technol. 10 (2), 236–248 (1989).ADSCrossRefGoogle Scholar
  3. 3.
    G. V. Rozenberg, “About the nature of aerosol absorption in the shortwave spectral region,” Izv. Akad. Nauk USSR, Fiz. Atmos. Okeana 15 (12), 1280–1291 (1979).ADSGoogle Scholar
  4. 4.
    V. A. Petrukhin, V. A. Vishenskii, S. L. Avaliani, K.A.Bushtueva, E. V. Pushkareva, O. V. Salieva, S. G. Paramonov, O. V. Larionova, I. N. Ivanova, N. S. Esaulenko, and E. G. Semutnikova, Risk of People Disease due to Vehicle Pollution of the Atmosphere. Experience of the use of the risk assessment technique in Russia, Ed. by V. A. Petrukhin (Nauka, Moscow, 2000) [in Russian].Google Scholar
  5. 5.
    Handbook on Ecological and Climate Parameters in Moscow, Ed. by A. A. Isaev (MSU, Moscow, 2005), vol. 2 [in Russian].Google Scholar
  6. 6.
    V. M. Kopeikin, “Aerosol black carbon in the Moscow air,” Izv. Akad. Nauk, Fiz. Atmos. Okeana 34 (1), 104–110 (1998).Google Scholar
  7. 7.
    Isakov A.A., “On intra-annual variability of the mass concentration of the submicron near-surface aerosol in Moscow Region,” Opt. Atmos. Okeana 23 (6), 462–465 (2010).CrossRefGoogle Scholar
  8. 8.
    G. I. Gorchakov, A. A. Isakov, I. I. Mokhov, M. A. Sviridenkov, K. A. Shugurov, A. V. Karpov, and A. V. Chernokul’skii, “Statistical parameters of variations in the mass concentration of submicron aerosol,” in Proceedings of the IV International Conference “Natural and Anthropogenic Aerosols,” Sankt Petersburg, Octo-ber 6–9, 2003 (NIIKh SPbGU, St. Petersburg, 2003), p. 499–503 [in Russian].Google Scholar
  9. 9.
    A. S. Emilenko and V. M. Kopeikin, “Comparison of synchronous measurements of soot and submicron aerosol concentrations in regions with different anthropogenic loadings,” Atmos. Ocean. Opt. 22 (4), 421–427 (2009).CrossRefGoogle Scholar
  10. 10.
    V. S. Kozlov, M. V. Panchenko, and E. P. Yausheva, “Mass fraction of Black Carbon in submicron aerosol as an indicator of influence of smokes from remote forest fires,” Atmos. Ocean. Opt. 19 (6), 434–440 (2006).Google Scholar
  11. 11.
    M. V. Panchenko, S. A. Terpugova, M. A. Sviridenkov, and V. S. Kozlov, “Active spectral nephelometry as a method for the study of submicron atmospheric aerosols,” Int. J. Remote Sens. 29, 2567–2583 (2008).ADSCrossRefGoogle Scholar
  12. 12.
    M. A. Sviridenkov, Avtoref. of Doctoral Dissertation in Mathematical Physics (Institute of Atmospheric Optics SB RAS, Tomsk, 2008).Google Scholar
  13. 13.
    V. M. Kopeikin, Avtoref. of Candidate’s Dissertation in Mathematical Physics (Institue of Atmospheric Physics, Moscow, 1998).Google Scholar
  14. 14.
    S. L. Belousov and T. S. Pagava, “Calculation of Trajectories of Air Particles,” in Branch Fund of Algorithms and Programs “Hydrometeorology Service”, No. 257244 8.00150-0113 (INIIGMI-MTsD, Obninsk, 1998), p. 1–104 [in Russian].Google Scholar
  15. 15.

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. M. Kopeikin
    • 1
    Email author
  • A. S. Emilenko
    • 1
  • A. A. Isakov
    • 1
  • O. V. Loskutova
    • 2
  • T. Ya. Ponomareva
    • 3
  1. 1.Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Mendeleev University of Chemical Technology of RussiaMoscowRussia
  3. 3.Hydrometeorological Centre of RussiaMoscowRussia

Personalised recommendations