Skip to main content

Variations in PM2.5 Surface Concentration in Moscow according to Observations at MSU Meteorological Observatory


We considered Moscow-specific features of time variations in PM2.5 mass concentration in the surface air layer as a function of a number of atmospheric parameters such as the concentrations of certain atmospheric trace gases, aerosol optical depth, surface air temperature, humidity, and wind speed. The time series of concentrations of PM2.5 and gaseous pollutants SO2, NH3, NO x , CO, and O3, obtained during continuous observations in 2011–2013, were analyzed. We studied the diurnal and seasonal variations in concentrations of PM2.5 and the trace gases, revealed correlations between them, analyzed variations in PM2.5 concentration as a function of concentration of certain gases participating in the formation of atmospheric aerosols, and as a function of meteorological parameters. Data on PM2.5 surface concentrations are compared with measurements of aerosol optical depth.

This is a preview of subscription content, access via your institution.


  1. 1.

    K. Ya. Kondrat’ev, L. S. Ivlev, and V. F. Krapivin, Properties, Formation, and Aftereffects of Atmospheric Aerosol: From Nano- to Global Scales (VVM, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  2. 2.

    J. H. Seinfeld and S. N. Pandis, Atmospheric Chemistry and Physics: From Air Pollution to Climate Change (John Wiley & Sons, New York, 2006), 2nd ed., p. 1232.

    Google Scholar 

  3. 3.

    L. S. Ivlev, Fundamentals of the Weather- and Climate- Formation Physics, Part 1. Vol. 2, Effect of Aerodispersion Systems on the Dynamic and Other Climate-Forming Processes in the Atmosphere. Natural and Technogenic Aerosols (VVM, St. Petersburg, 2009) [in Russian].

    Google Scholar 

  4. 4.

    A. S. Ginzburg, D. P. Gubanova, and V. M. Minashkin, “Effect of natural and anthropogenic aerosols on the global and regional climates,” Ros. Khim. Zh. LII (5), 112–119 (2008).

    Google Scholar 

  5. 5.

    D. P. Gubanova, “Role of carbonaceous and sulfate aerosols in the climate formation and change,” in Proc. of the 8th Petryakov Readings, Moscow, June 28–30, 2011 (MGIU, Moscow, 2011), p. 210–243 [in Russian].

    Google Scholar 

  6. 6.

    S. N. Pandis, A. S. Wexler, and J. H. Seinfeld, “Dynamics of tropospheric aerosols,” J. Phys. Chem. 99, 9646–9659 (1995).

    Article  Google Scholar 

  7. 7.

    P. C. Reist, Introduction to Aerosol Science (MacMillan Publ., 1984).

    Google Scholar 

  8. 8.

    E. Meszaros, Fundmentals of Atmospheric Aerosol Chemistry (Akademia Kiado, Budapest, 1999).

    Google Scholar 

  9. 9.

    M. C. Barth, P. J. Rasch, J. T. Kiehl, C. M. Benkovitz, and S. E. Schwartz, “Sulfur chemistry in the National Center for Atmospheric Research Community Climate Model: Description, evaluation, features, and sensitivity to aqueous chemistry,” J. Geophys. Res., D 105 (1), 1387–1415 (2000).

    ADS  Article  Google Scholar 

  10. 10.

    Moscow State University Meteorological Observatory. Chemistry of Atmospheric Air. Cited February 16, 2017.

  11. 11.

    I. B. Belikov, E. V. Gorbarenko, I. D. Eremina, E. Yu. Zhdanova, P. I. Konstantinov, I. A. Korneva, M. A. Lokoshchenko, E. I. Nezval’, A. I. Skorokhod, S. A. Sokratov, N. E. Chubarova, O. A. Shilovtseva, A. A. Polyukhov, I. D. Gorlova, Yu. G. Seliverstov, and P. B. Grebennikov, Ecological and Climate Parameters of the Atmosphere in 2013 According to Data of Moscow State University Meteorological Observatory, Ed. by N.E. Chubarova (MAKS Press, Moscow, 2014) [in Russian].

  12. 12.

    N. F. Elansky, M. A. Lokoshchenko, I. B. Belikov, A. I. Skorokhod, and R. A. Shumskii, “Variability of trace gases in the atmospheric surface layer from observations in the city of Moscow,” Izv., Atmos. Ocean. Phys. 43 (2), 219–231 (2007).

    Article  Google Scholar 

  13. 13.

    N. F. Elansky, M. A. Lokoshchenko, A. V. Trifanova, I. B. Belikov, and A. I. Skorokhod, “On contents of trace gases in the atmospheric surface layer over Moscow,” Izv., Atmos. Ocean. Phys. 51 (1), 30–41 (2015).

    Article  Google Scholar 

  14. 14.

    Atmosphere Composition over Northern Eurasia: TROICA EExperiments. Cited October 12, 2016.

  15. 15.

    Thermo Scientific Ambient Particulate Monitor. TEOM® 1400ab. Product Specifications. Cited September 22, 2016.

  16. 16.

    G. Allen, C. Sioutas, P. Koutrakis, R. Reiss, F. W. Lurmann, and P. T. Roberts, “Evaluation of the TEOM method for measurement of ambient particulate mass in urban areas,” J. Air Waste Manage. Assoc. 47, 682–689 (1997).

    Article  Google Scholar 

  17. 17.

    N. Chubarova, A. Poliukhov, and I. Gorlova, “Longterm variability of aerosol optical thickness in Eastern Europe over 2001–2014 according to the measurements at the Moscow MSU MO AERONET site with additional cloud and NO2 correction,” Atmos. Meas. Tech. 9 (2), 313–334 (2016).

    Article  Google Scholar 

  18. 18.

    N. Chubarova, A. Smirnov, and B. N. Holben, “Aerosol properties in Moscow according to 10 years of AERONET measurements at the Meteorological Observatory of Moscow State University,” Geography, Environment, Sustainability 4 (1), 19–32 (2011).

    Article  Google Scholar 

  19. 19.

    B. N. Holben, T. F. Eck, I. Slutsker, D. Tanre, J. P. Buis, A. Setzer, E. Vermote, J. A. Reagan, Y. J. Kaufman, T. Nakadjima, F. Lavenu, I. Jankowiak, and A. Smirnov, “AERONET—a federated instrument network and data archive for aerosol characterization,” Remote Sens. Environ., No. 66, 1–16 (1998).

    ADS  Article  Google Scholar 

  20. 20.

    A. Smirnov, B. N. Holben, T. F. Eck, O. Dubovik, and I. Slutsker, “Cloud-screening and quality control algorithms for the AERONET database,” Remote Sens. Environ., No. 73, 337–349 (2000).

    ADS  Article  Google Scholar 

  21. 21.

    RD 52.04.667-2005, Documents on the State of Urban Air Pollution for Informing Public Authorities, the Public, and Population. General Requirements for the Development, Construction, Description, and Content (Rosgidromet, Moscow, 2006) [in Russian].

  22. 22.

    A. V. Trefilova, M. S. Artamonova, T. M. Kuderina, D. P. Gubanova, K. A. Davydov, M. A. Iordanskii, E. I. Grechko, and V. M. Minashkin, “The chemical composition and microphysical characteristics of aerosol over Moscow and its vicinity in June 2009 and during the fire peak of 2010,” Geofiz. Protsessy Biosfera 11 (4), 65–82 (2012).

    Google Scholar 

  23. 23.

    V. S. Rakitin, E. V. Fokeeva, E. I. Grechko, A. V. Dzhola, and R. D. Kuznetsov, “Variations of the total content of carbon monoxide over Moscow megapolis,” Izv., Atmos. Ocean. Phys. 47 (1), 59–66 (2011).

    Article  Google Scholar 

  24. 24.

    A. A. Glazkova, I. N. Kuznetsova, I. Yu. Shalygina, and E. G. Semutnikova, “The diurnal variation of aerosol concentration (PM10) in summer in the Moscow region,” Opt. Atmos. Okeana 25 (6), 495–500 (2012).

    Google Scholar 

  25. 25.

    I. N. Kuznetsova, A. A. Glazkova, I. Yu. Shalygina, M. I. Nakhaev, A. A. Arkhangel’skaya, A. M. Zvyagintsev, E. G. Semutnikova, P. V. Zakharova, and E. A. Lezina, “Seasonal and diurnal variability of particulate matter PM10 in surface air of Moscow habitable districts,” Opt. Atmos. Okeana 27 (6), 473–482 (2014).

    Google Scholar 

  26. 26.

    X. Querola, A. Alastuey, S. Rodrigueza, F. Plana, C. R. Ruiza, N. Cots, G. Massague, and O. Puig, “PM10 and PM2.5 source apportionment in the Barcelona Metropolitan area, Catalonia, Spain,” Atmos. Environ. 35, 6407–6419 (2001).

    ADS  Article  Google Scholar 

  27. 27.

    J. C. Hains, L.-W. A. Chen, B. F. Taubman, B. G. Doddridge, and R. R. Dickerson, “A side-by-side comparison of filter-based PM2.5 measurements at a suburban site: A closure study,” Atmos. Environ. 41, 6167–6184 (2007).

    ADS  Article  Google Scholar 

  28. 28.

    I. Steinberga, “Variations of particulate matter concentrations and particle-associated substances in Latvia,” Environ. Clim. Technol. 7, 113–118 (2011).

    Google Scholar 

  29. 29.

    T. Gotschi, L. Oglesby, P. Mathys, C. Monn, N. Manalis, K. Koistinen, M. Jantunen, O. Hanninen, L. Polanska, and N. Kunzli, “Comparison of black smoke and PM2.5 levels in indoor and outdoor environments of four European cities,” Environ. Sci. Technol. 36, 1191–1197 (2002).

    ADS  Article  Google Scholar 

  30. 30.

    G. I. Gorchakov, A. S. Emilenko, M. A. Sviridenkov, and V. N. Sidorov, “Study of long-term variability of submicron aerosol concentration,” Atmos. Ocean. Opt. 11 (6), 530–531 (1998).

    Google Scholar 

  31. 31.

    M. A. Sviridenkov, V. N. Sidorov, and G. I. Gorchakov, “Temporal variability of the background aerosol content in the surface air layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 19 (11), 1226–1231 (1983).

    ADS  Google Scholar 

  32. 32.

    N. F. Elansky, O. V. Lavrova, A. I. Skorokhod, and I. B. Belikov, “Trace gases in the atmosphere over Russian cities,” Atmos. Environ. 143, 108–119 (2016).

    ADS  Article  Google Scholar 

  33. 33.

    N. E. Chubarova, E. I. Nezval’, I. B. Belikov, E. V. Gorbarenko, I. D. Eremina, E. Yu. Zhdanova, I. A. Korneva, P. I. Konstantinov, M. A. Lokoshchenko, A. I. Skorokhod, and O. A. Shilovtseva, “Climatic and environmental characteristics of Moscow megalopolis according to the data of the Moscow State University Meteorological Observatory over 60 years,” Rus. Meteorol. Hydrol. 39 (9), 602–613 (2014).

    Article  Google Scholar 

  34. 34.

    M. A. Lokoshchenko, N. F. Elansky, and A. V. Trifanova, “Influence of meteorological conditions on air pollution in Moscow,” Vestn. RAEN, No. 1, 64–67 (2014).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to D. P. Gubanova.

Additional information

Original Russian Text © D.P. Gubanova, I.B. Belikov, N.F. Elansky, A.I. Skorokhod, N.E. Chubarova, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gubanova, D.P., Belikov, I.B., Elansky, N.F. et al. Variations in PM2.5 Surface Concentration in Moscow according to Observations at MSU Meteorological Observatory. Atmos Ocean Opt 31, 290–299 (2018).

Download citation


  • aerosols
  • PM2.5 mass concentration
  • tracees
  • atmospheric composition
  • aerosol optical depth
  • atmospheric pollutants