Skip to main content

Lidar Observations of Atmospheric Optical Characteristics during Sichuan Earthquake


The results of lidar observations of the atmosphere during the Sichuan (China) earthquake of 2008 are presented. It is shown that atmospheric parameters substantially changed during and after the earthquake. The profile of scattering characteristics formed in the lower troposphere differs from the original, which can serve as a predictor for earthquakes.

This is a preview of subscription content, access via your institution.


  1. 1.

    R. S. Leonard and R. A. Barnes, “Observations of ionospheric disturbance following the Alaskan earthquake,” J. Geophys. Res. 70 (9), 1250–1253 (1965).

    ADS  Article  Google Scholar 

  2. 2.

    V. A. Liperovskii, O. A. Pokhotelov, and S. A. Shalimov, Ionospheric Precursors of Earthquakes (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  3. 3.

    E. Davies and D. M. Baker, “Ionospheric effect observed around the time of the Alaskan earthquake of March 28, 1964,” J. Geophys. Res. 70 (9), 2251–2253 (1965).

    ADS  Article  Google Scholar 

  4. 4.

    Short-Term Forecast of Catastrophic Earthquakes with the Use of Radio-Physics Ground- and Space-Based Methods, Ed. by V.N. Strakhov (IPE RAS, Moscow, 1999) [in Russian].

    Google Scholar 

  5. 5.

    V. V. Chmyrev, N. S. Isaev, and S. V. Bilichenko, “Observation by space borne detectors waves in the ionosphere over the earthquake centre,” Phys. Earth Planet Inter. 57, 110–114 (1989).

    ADS  Article  Google Scholar 

  6. 6.

    L. S. Ivlev, V. I. Davydova-Martines, O. A. Vargas, and A. Martines, “Variability of aerosol, ozone, and sulfur dioxide characteristics in the surface layer on earthquake in West Mexico,” Atmos. Ocean. Opt. 11 (5), 428–431 (1998).

    Google Scholar 

  7. 7.

    A. A. Tronin, “Thermal IR satellite sensor data application for earthquake research in China,” Int. J. Remote Sens. 21 (6), 3169–3177 (2000).

    ADS  Article  Google Scholar 

  8. 8.

    G. G. Matvienko, V. A. Alekseev, A. I. Grishin, G. M. Krekov, and M. M. Krekova, “Study of fluctuations of electric and aerosol characteristics of the atmosphere as a precursor of tectonic activity,” Atmos. Ocean. Opt. 8 (8), 629–637 (2007).

    Google Scholar 

  9. 9.

    J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20 (2), 211–220 (1981).

    ADS  Article  Google Scholar 

  10. 10.

    C. F. Richter, Elementary Seismology (W.H. Freeman and Co., San Francisco, 1958).

    Google Scholar 

  11. 11.

    A. E. Gill, Atmosphere-Ocean Dynamics (Academic Press, 1982).

    Google Scholar 

  12. 12.

    A. M. Obykhov, Turbulence and Dynamics of the Atmosphere (Gidrometeoizdat, Leningrad, 1988) [in Russian].

    Google Scholar 

  13. 13.

    G. Korn and T. Korn, Mathematics Handbook (Nauka, Moscow, 1977) [in Russian].

    MATH  Google Scholar 

  14. 14.

    V. E. Zuev and G. M. Krekov, Modern Problems of Atmospheric Optics, Vol. 2, Optical Models of Atmosphere (Gidrometeoizdat, Leningrad, 1986) [in Russia].

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. I. Grishin.

Additional information

Original Russian Text © A.I. Grishin, A.V. Kryuchkov, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Grishin, A.I., Kryuchkov, A.V. Lidar Observations of Atmospheric Optical Characteristics during Sichuan Earthquake. Atmos Ocean Opt 31, 269–272 (2018).

Download citation


  • earthquake
  • atmosphere
  • lidar
  • aerosol concentration
  • boundary layer