Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 3, pp 311–316 | Cite as

Elevated Humidity in the Stratosphere as a Gain Factor of Ozone Depletion in the Arctic According to Aura MLS Observations

  • O. E. Bazhenov
Atmospheric Radiation, Optical Weather, and Climate

Abstract

The analysis of Aura MLS data showed that the temperature in the Arctic stratosphere was much lower than normal throughout the period from January to March 2011 in the altitude range 20–35 km. That led to a considerable spread of polar stratospheric clouds (PSCs), which were formed most intensely in periods and at altitudes of minimal temperatures (maximal temperature drop below PSC formation threshold). The main ozone losses were observed in March. They were due to a photochemical release of chlorine that avoided deactivation in view of the nitrogen deficit caused by denitrification in the course of frequent dehydration events indicated by oscillations of the altitude of maximal humidity distortion. Elevated humidity in the stratosphere had raised the threshold temperature of formation of PSCs that persisted until late March; this promoted the chlorine activation and, thereby, delayed the chlorine deactivation, resulting in an even higher level of overall ozone losses during March 2011.

Keywords

stratosphere temperature humidity ozone satellite data anomalous variations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Scientific Assessment of Ozone Depletion: Global Ozone Research and Monitoring Project, Report N 55 (WMO, Genewa, 2014).Google Scholar
  2. 2.
    G. L. Manney, M. L. Santee, M. Rex, N. J. Livesey, M. C. Pitts, P. Veefkind, E. R. Nash, I. Wohltmann, R. Lehmann, L. Froidevaux, L. R. Poole, M. R. Schoeberl, D. P. Haffner, J. Davies, V. Dorokhov, H. Gernandt, B. Johnson, R. Kivi, E. Kyro, N. Larsen, P. F. Levelt, A. Makshtas, C. T. McElroy, H. Nakajima, M. C. Parrondo, D. W. Tarasick, P. Gathen, K. A. Walker, and N. S. Zinoviev, “Unprecedented Arctic ozone loss in 2011,” Nature 478 (7370), 469–475 (2011). doi 10.1038/nature10556ADSCrossRefGoogle Scholar
  3. 3.
    E. Arnone, E. Castelli, E. Papandrea, M. Carlotti, and B. M. Dinelli, “Extreme ozone depletion in the 2010–2011 Arctic winter stratosphere as observed by MIPAS/ENVISAT using a 2-D tomographic approach,” Atmos. Chem. Phys. 12, 9149–9165 (2012). doi 10.5194/acp-12-9149-2012ADSCrossRefGoogle Scholar
  4. 4.
    S. P. Smyshlyaev, A. I. Pogorel’tsev, V. Ya. Galin, and E. A. Drobashevskaya, “Influence of wave activity on the composition of the polar stratosphere,” Geomagn. Aeron. (Engl. Trans.) 56 (1), 95–109 (2016).ADSCrossRefGoogle Scholar
  5. 5.
    S. M. Khaykin, I. Engel, H. Vomel, I. M. Formanyuk, R.Kivi, L. I. Korshunov, M. Kramer, A. D. Lykov, S.Meier, T. Naebert, M. C. Pitts, M. L. Santee, N. Spelten, F. G. Wienhold, V. A. Yushkov, and T. Peter, “Arctic stratospheric dehydration—Part 1: Unprecedented observation of vertical redistribution of water,” Atmos. Chem. Phys. 13, 11503–11517 (2013). doi 10.5194/acp-13-11503-2013ADSCrossRefGoogle Scholar
  6. 6.
    A. Tabazadeh, M. L. Santee, M. Y. Danilin, H. C. Pumphrey, P. A. Newman, P. J. Hamill, and J. L. Mergenthaler, “Quantifying denitrification and its effect on ozone recovery,” Science 288, 1407–1411 (2000).ADSCrossRefGoogle Scholar
  7. 7.
    O. B. Toon and R. P. Turco, “Polar stratospheric clouds and ozone depletion,” Sci. Am. 264, 68–74 (1991). doi 10.1038/scientificamerican0691-68CrossRefGoogle Scholar
  8. 8.
    R. Lindenmaier, K. Strong, R. L. Batchelor, M. P. Chipper-field, W. H. Daffer, J. R. Drummond, T. J. Duck, H. Fast, W. Feng, P. F. Fogal, F. Kolonjari, G. L. Manney, A. Manson, C. Meek, R. L. Mittermeier, G. J. Nott, C. Perro, and K. A. Walker, “Unusually low ozone, HCl, and HNO3 column measurements at Eureka, Canada during winter/spring 2011,” Atmos. Chem. Phys. 12, 3821–3835 (2012). doi 10.5194/acp- 12-3821-2012ADSCrossRefGoogle Scholar
  9. 9.
    D. Hanson and K. Mauersberger, “Vapor pressures of HNO3/H2O solutions at low temperatures,” J. Phys. Chem. 92, 6167–6170 (1988).CrossRefGoogle Scholar
  10. 10.
    K. S. Carslaw, B. Luo, and T. Peter, “An analytic expression for the composition of aqueous HNO3–H2SO4 stratospheric aerosols including gas phase removal of HNO3,” Geophys. Res. Lett. 22, 1877–1880 (1995).ADSCrossRefGoogle Scholar
  11. 11.
    S. P. Sander, J. Abbatt, J. R. Barker, J. B. Burkholder, R. R. Friedl, D. M. Golden, R. E. Huie, C. E. Kolb, M. J. Kurylo, G. K. Moortgat, V. L. Orkin, and P. H. Wine, Chemical kinetics and photochemical data for use in atmospheric studies, JPL Publication No. 10-6 (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA, 2011).Google Scholar
  12. 12.
    L. Thölix, L. Backman, R. Kivi, and A. Yu. Karpechko, “Variability of water vapour in the Arctic stratosphere,” Atmos. Chem. Phys. 16, 4307–4321 (2016).ADSCrossRefGoogle Scholar
  13. 13.
    D. B. Kirk-Davidoff, J. G. Anderson, E. J. Hintsa, and D. W. Keith, “The effect of climate change on ozone depletion through changes in stratospheric water vapour,” Nature 402, 399–401 (1999).ADSCrossRefGoogle Scholar
  14. 14.
    B.-M. Sinnhuber, G. Stiller, R. Ruhnke, T. von Clarmann, S. Kellmann, and J. Aschmann, “Arctic winter 2010/2011 at the brink of an ozone hole,” Geophys. Res. Lett. 38, L24814 (2011). doi 10.1029/2011GL049784ADSCrossRefGoogle Scholar
  15. 15.
    F. Khosrawi, J. Urban, S. Lossow, G. Stiller, K. Weigel, P. Braesicke, M. C. Pitts, A. Rozanov, J. P. Burrows, and D. Murtagh, “Sensitivity of polar stratospheric cloud formation to changes in water vapour and temperature,” Atmos. Chem. Phys. 16, 101–121 (2016).ADSCrossRefGoogle Scholar
  16. 16.
    O. E. Bazhenov and V. D. Burlakov, “Anomalous decrease of the level of the total ozone content over Tomsk and northern territory of Russia in March–April 2011,” Opt. Atmos. Okeana 24 (10), 915–919 (2011).Google Scholar
  17. 17.
    O. E. Bazhenov, “Assessing the effects of humidity and temperature in the stratosphere on the occurrence of ozone anomaly in spring of 2011 in Arctic and over northern territory of Russia,” Opt. Atmos. Okeana 25 (7), 589–593 (2012).Google Scholar
  18. 18.
    J. Kuttippurath, S. Godin-Beekmann, F. Lefevre, G. Nikulin, M. L. Santee, and L. Froidevaux, “Recordbreaking ozone loss in the Arctic winter 2010/2011: Comparison with 1996/1997,” Atmos. Chem. Phys. 12, 7073–7085 (2012). doi 10.5194/acp-12-7073-2012ADSCrossRefGoogle Scholar
  19. 19.
    D. Hanson and K. Mauersberger, “Solubility and equilibrium vapor pressures of HCl dissolved in polar stratospheric cloud materials—Ice and the trihydrate of nitric acid,” Geophys. Res. Lett. 15, 1507–1510 (1988). doi 10.1029/GL015i013p01507ADSCrossRefGoogle Scholar
  20. 20.
    A. J. McDonald, S. E. George, and R. M. Woollands, “Can gravity waves significantly impact PSC occurrence in the Antarctic?” Atmos. Chem. Phys. 9, 8825–8840 (2009). doi 10.5194/acp-9-8825-2009ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia

Personalised recommendations