Skip to main content

Vertical Distributions of Gaseous and Aerosol Admixtures in Air over the Russian Arctic

Abstract

Data on the vertical distribution of gaseous and aerosol composition of air, measured onboard the Tu-134 Optic airborne laboratory in October 2014 over the Kara Sea and coastal areas of the Russian Arctic, are presented. We revealed the specific features of the altitude distributions of CO2 and aerosol over the Kara Sea as compared to continental conditions. No significant deviations from continental distributions are found for CH4, CO, and O3.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    T. G. Shepherd, “Effects of a Warming Arctic,” Science 353 (6303), 989–990 (2016).

    ADS  Article  Google Scholar 

  2. 2.

    O. M. Johannessen, S. I. Kuzmina, L. P. Bobylev, and M. W. Miles, “Surface air temperature variability and trends in the Arctic: New amplification assessment and regionalization,” Tellus 68, 28234 (2016). doi 10.3402/tellusa.v68.28234

    Article  Google Scholar 

  3. 3.

    M. Vogt, “Adrift in an ocean of change,” Science 350 (6267), 1466–1468 (2015).

    ADS  Article  Google Scholar 

  4. 4.

    M. R. Najafi, F. W. Zwiers, and N. P. Gillett, “Attribution of Arctic temperature change to greenhouse-gas and aerosol influences,” Nat. Clim. Change, No. 5, 246–249 (2015).

    ADS  Article  Google Scholar 

  5. 5.

    L. Tranvik, “Carbon cycling in the Arctic,” Science 345 (6199), 870 (2014).

    ADS  Article  Google Scholar 

  6. 6.

    R. M. Cory, C. P. Ward, B. C. Crump, and G. W. Kling, “Sunlight controls water columm processing of carbon in Arctic fresh waters,” Science 345 (6199), 925–928 (2014).

    ADS  Article  Google Scholar 

  7. 7.

    S. R. Arnold, K. S. Law, C. A. Brock, J. L. Thomas, S. M. Starkweather, K. Salzen, A. Stohl, S. Sharma, M. T. Lund, M. G. Flanner, T. Petaja, H. Tanimoto, J. Gamble, J. E. Dibb, M. Melamed, N. Johnson, M. Fider, V.-P. Tynkkynen, A. Baklanov, S. Eckhardt, S. A. Monks, J. Browse, and H. Bozem, “Arctic air pollution: Challenges and opportunities for the next decade,” Elementa: Sci. Anth., No. 4, 16 (2016).

  8. 8.

    K. S. Law, A. Stohl, P. K. Quinn, C. A. Brock, J.F.Burkhart, J. D. Paris, G. Ancellet, B. Singh, A. Roiger, and H. Schlager, “Arctic air pollution,” Bull. Am. Meteorol. Soc. 95 (12), 1873–1895 (2014).

    ADS  Article  Google Scholar 

  9. 9.

    A. Roiger, J.-L. Thomas, H. Schlager, K. S. Law, J. Kim, A. Schafler, B. Weinzierl, F. Dahlkotter, I. Krisch, L. Marelle, A. Minikin, J.-C. Raut, A. Reiter, M. Rose, M. Scheibe, P. Stock, R. Baumann, C. Clerbaux, M. George, T. Onishi, and J. Flemming, “Quantifying emerging local anthropogenic emissions in the Arctic region,” Bull. Am. Meteorol. Soc. 96 (3), 441–460 (2015).

    ADS  Article  Google Scholar 

  10. 10.

    N. Evangeliou, Y. Balkanski, W. M. Hao, A. Petkov, R. P. Silverstein, R. Corley, B. L. Nordgren, S. P. Urbanski, S. Eckhardt, A. Stohl, P. Tunved, S. Crepinsek, A. Jefferson, S. Sharma, J. K. Njgaard, and H. Skov, “Wildfires in Northern Eurasia affect the budget of black carbon in the Arctic—a 12-year retrospective synopsis (2002–2013),” Atmos. Chem. Phys. 16 (12), 7587–7604 (2016).

    ADS  Article  Google Scholar 

  11. 11.

    S. J. O’Shea, G. Allen, M. W. Gallagher, K. Bower, S.M. Illingworth, J. B. A. Muller, B. T. Jones, C. J. Percival, S. J-B. Bauguitte, M. Cain, N. Warwick, A.Quiguet, U. Skuba, J. Drewer, K. Dinsmore, E. G. Nisbet, D. Lowry, R. E. Fisher, J. L. France, M. Aurela, A. Lohila, G. Hayman, C. George, D. B. Clark, A. J. Manning, A. D. Friend, and J. Pyle, “Methane and carbon dioxide fluxes and their regional scalability for the European Arctic wetlands during the MAMM,” Atmos. Chem. Phys. 14 (23), 13159–13174 (2014).

    ADS  Article  Google Scholar 

  12. 12.

    M. D. Willis, J. Burkart, J. L. Thomas, F. Kollner, J. Schneider, H. Bozem, P. M. Hoor, A. A. Aliabadi, H. Schulz, A. B. Herber, W. R. Leaitch, and J. D. Abbatt, “Growth of nucleation mode particles in the summertime Arctic: A case study,” Atmos. Chem. Phys. 16 (12), 7663–767 (2016).

    ADS  Article  Google Scholar 

  13. 13.

    E. Asmi, V. Kondratyev, D. Brus, T. Laurila, H. Lihavainen, J. Backman, V. Vakkari, M. Aurela, J. Hatakka, Y. Viisanen, T. Uttal, V. Ivakhov, and A. Makshtas, “Aerosol size distribution seasonal characteristics,” Atmos. Chem. Phys. 16 (13), 1271–1287 (2016).

    ADS  Article  Google Scholar 

  14. 14.

    A. E. Cassidy, A. Christen, and Y. R. Henry, “The effect of a permafrost disturbance on growing-season carbon-dioxide fluxes in high Arctic tundra ecosystem,” Biogeosciences 13 (8), 2291–2303 (2016).

    ADS  Article  Google Scholar 

  15. 15.

    I. B. Strachan, R. A. Nugent, S. Crombie, and M. C. Bonneville, “Carbon dioxide and methane exchange at a cool-temperate freshwater marsh,” Environ. Res. Lett 10 (10), 10 (2015).

    Google Scholar 

  16. 16.

    J. B. Fisher, M. Sikka, W. C. Oechel, D. N. Huntzinger, J. R. Melton, C. D. Koven, A. Ahlstrom, M. A. Arian, I. Baker, J. M. Chen, P. Ciais, C. Davidson, M. Dietze, B. El-Marsi, D. Hayes, C. Huntingford, A. K. Jain, P. E. Levy, M. R. Lomas, B. Poulter, D. Price, A. K. Sahoo, K. Schaefer, H. Tian, E. Tomelleri, H. Verbeeck, N. Viovy, R. Wania, N. Zeng, and C. E. Miller, “Carbon cycle uncertainty in the Alaskan Arctic,” Biogeosciences 11 (15), 4271–4288 (2014).

    ADS  Article  Google Scholar 

  17. 17.

    M. Langer, S. Westermann, K. W. Anthony, K. Wischnewski, and J. Boike, “Frozen ponds: Production and storage of methane during the Arctic winter in a lowland tundra landscape in Northern Siberia, Lena,” Biogeosciences 12 (4), 977–990 (2015).

    ADS  Article  Google Scholar 

  18. 18.

    L. L. Golubyatnikov and V. S. Kazantsev, “Contribution of tundra lakes in western Siberia to the atmospheric methane budget,” Izv., Atmos. Ocean. Phys. 49 (4), 430–438 (2013).

    Article  Google Scholar 

  19. 19.

    A. A. Kiselev and A. I. Reshetnikov, “Methane in the Russian Arctic: Observation and calculation results,” Probl. Arktiki Antarktiki, No. 2, 5–15 (2013).

    Google Scholar 

  20. 20.

    M. Giamarelou, K. Eleftheriadis, S. Nyeki, K. Torseth, and G. Biskos, “Indirect evidence of the composition of nucleation mode atmospheric particles in the high Arctic,” J. Geophys. Res.: Atmos 121 (2), 965–975 (2016).

    ADS  Google Scholar 

  21. 21.

    C. L. Myhre, B. Ferre, M. Platt, A. Silyakova, O. Hermansen, G. Allen, I. Pisso, N. Schmidbauer, A. Stohl, J. Pitt, P. Jansson, J. Greinert, C. Percival, A. M. Fjaeraa, S. J. O’Shea, M. Gallagher, M. L. Breton, K. N. Bower, S. J. B. Bauguitte, S. Dalsoren, S. Vadakkepuliyambatta, R. E. Fisher, E. G. Nisbet, D. Lowry, G. Myhre, J. A. Pyle, M. Cain, and J. Mienert, “Extensive release of methane from Arctic seabed west of Svalbard during summer 2014,” Geophys. Rev. Lett. 43 (9), 4624–4631 (2016).

    ADS  Article  Google Scholar 

  22. 22.

    J. L. France, M. Cain, R. E. Fisher, D. Lowry, G. Allen, S. J. O. Shea, S. Illingworth, J. Pyle, N. Warwick, B. T. Jones, M. W. Gallagher, K. Bower, M. L. Breton, C. Percival, J. Muller, A. Wellpott, S. Bauguitte, C. George, G. D. Hayman, A. J. Manning, C. L. Myhre, M. Lanoiselle, and E. G. Nisbet, “Measurements of δ13C in CH4 and using particle dispersion modeling to characterize sources of Arctic methane within an air mass,” J. Geophys. Res.: Atmos 121 (23), 14257–14270 (2016).

    ADS  Google Scholar 

  23. 23.

    B. Quennehen, A. Schwarzenboeck, J. Schmale, J. Schneider, H. Sodemann, A. Stohl, G. Ancellet, S. Crumeyrolle, and K. S. Law, “Physical properties of pollution aerosol particles transported from north America to greenland as measured during the POLARCAT summer campaign,” Atmos. Chem. Phys. 11 (21), 10947–10963 (2011).

    ADS  Article  Google Scholar 

  24. 24.

    W. R. Leaitch, A. Korolev, A. A. Aliabadi, J. Burkart, M. D. Willis, J. P. D. Abbatt, H. Bozem, P. Hoor, F. Kollner, J. Schneider, A. Herber, C. Konrad, and R. Brauner, “Effects of 20–100 nm particles on liquid clouds in the clean summertime Arctic,” Atmos. Chem. Phys. 16 (17), 11107–11124 (2016).

    ADS  Article  Google Scholar 

  25. 25.

    C. D. Zwaaftink, H. Grythe, H. Skov, and A. Stohl, “Substantial contribution of northern high-latitude sources to mineral dust in the Arctic,” J. Geophys. Res.: Atmos 121 (23), 13678–13697 (2016).

    ADS  Google Scholar 

  26. 26.

    J. Heintzenberg and C. Leck, “The summer aerosol in the central Arctic 1991–2008: Did it change or not?” Atmos. Chem. Phys. 12 (9), 3969–3983 (2012).

    ADS  Article  Google Scholar 

  27. 27.

    J. Tollefson, “Carbon-sensing satellite system faces high hurdles,” Nature 533 (7604), 446–447 (2016).

    ADS  Article  Google Scholar 

  28. 28.

    G. Popkin, “Commercial space sensors go high-tech,” Nature 545 (7655), 397–398 (2017).

    ADS  Article  Google Scholar 

  29. 29.

    A.P. Nagurnyi, “Analysis of measurement data on carbon dioxide concentration in the near-ice surface atmosphere at North Pole-35 drifting ice station (2007–2008),” Rus. Meteorol. Hydrol. 35 (9), 619–623 (2010).

    Article  Google Scholar 

  30. 30.

    A. P. Nagurnyi and A. P. Makshtas, “Methane concentration in the atmospheric boundary layer from the measurements at North Pole-36 and North Pole-39 drifting ice stations,” Rus. Meteorol. Hydrol. 41 (3), 199–204. 2016

    Article  Google Scholar 

  31. 31.

    I. I. Pipko, S. P. Pugach, and I. P. Semiletov, “CO2 dynamics on the shelf of the East Siberian Sea,” Rus. Meteorol. Hydrol. 35 (9), 624–632 (2010).

    Article  Google Scholar 

  32. 32.

    I. P. Semiletov, N. E. Shakhova, I. I. Pipko, S. P. Pugach, A. N. Charkin, O. V. Dudarev, D. A. Kosmach, and S. Nishino, “Space-time dynamics of carbon and environmental parameters related to carbon dioxide emissions in the Buor-Khaya Bay and adjacent part of Laptev Sea,” Biogeosciences 10 (9), 5977–5996 (2013).

    ADS  Article  Google Scholar 

  33. 33.

    J. Yu, Z. Xie, L. Sun, H. Kang, P. He, and G. Xing, “δ13C-CH4 reveals CH4 variations over oceans from mid-latitudes to the Arctic,” Sci. Rep 5 (13760), 9 (2015).

    Google Scholar 

  34. 34.

    P. N. Antokhin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, P. Nédélec, J.-D. Paris, T. M. Rasskazchikova, D. E. Savkin, D. V. Simonenkov, T. K. Sklyadneva, G. N. Tolmachev, and A. V. Fofonov, “Largescale studies of gaseous and aerosol composition of air over Siberia,” Opt. Atmos. Okeana 27 (3), 232–239 (2014).

    Google Scholar 

  35. 35.

    G. G. Anokhin, P. N. Antokhin, M. Yu. Arshinov, V. E. Barsuk, B. D. Belan, S B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, V. S. Kozlov, M. V. Morozov, M. V. Panchenko, I. E. Penner, D. A. Pestunov, G. P. Sikov, D. V. Simonenkov, D. S. Sinitsyn, G. N. Tolmachev, D. V. Filippov, A. V. Fofonov, D. G. Chernov, V. S. Shamanaev, and V. P. Shmargunov, “OPTIK Tu-134 aicraft laboratory,” Opt. Atmos. Okeana 24 (9), 805–816 (2011).

    Google Scholar 

  36. 36.

    A. Berchet, P. Bousguet, I. Pison, R. Locatelli, F. Chevallier, J.-D. Paris, E. J. Dlugokencky, T. Laurila, J. Hatakka, Y. Viisanen, D. E. J. Worthy, E. Nisbet, R. Fisher, J. France, L. Lowry, V. Ivakhov, and O. Hermansen, “Atmospheric constraints on the methane emissions from the East Siberian shelf,” Atmos. Chem. Phys. 16 (6), 4147–4157 (2016).

    ADS  Article  Google Scholar 

  37. 37.

    T. Bourgeois, J. C. Orr, L. Resplandy, J. Terhaar, C. Ethe, M. Gehlen, and L. Bopp, “Coastal-ocean uptake of anthropogenic carbon,” Biogeosciences 13 (14), 4167–4185 (2016).

    ADS  Article  Google Scholar 

  38. 38.

    B. G. Sherstyukov, “Inertance of surface temperature variations,” Rus. Meteorol. Hydrol. 42 (4), 213–221 (2017).

    Article  Google Scholar 

  39. 39.

    P. N. Antochin, V. G. Arshinova, M. Yu. Arshinov, B. D. Belan, S. B. Belan, D. K. Davydov, G. A. Ivlev, A. V. Kozlov, T. M. Rasskazchikova, and A. V. Fofonov, “The blocking role of the Ural mountains in the transborder transfer of impurities from Europe to Asia,” Atmos. Oceanic Opt. 24 (3), 242–246 (2011).

    Article  Google Scholar 

  40. 40.

    J.-D. Paris, A. Stohl, P. Ciais, P. Nédélec, B. D. Belan, M. Y. Arshinov, and M. Ramonet, “Source-receptor relationships for airborne measurements of CO2, CO and O3 above Siberia: A cluster-based approach,” Atmos. Chem. Phys. 10 (4), 1671–1687 (2010).

    ADS  Article  Google Scholar 

  41. 41.

    J.-D. Paris, Ph. Ciais, Ph. Nédélec, A. Stohl, B. D. Belan, M. Yu. Arshinov, C. Carouge, G. Golitsyn, and I. G. Granberg, “New insights on the chemical composition of the Siberian air shed from the YAKAEROSIB aircraft campaigns,” Bull. Am. Meteorol. Soc. 91 (5), 625–641 (2010).

    ADS  Article  Google Scholar 

  42. 42.

    The state of greenhouse gases in the atmosphere based on global observations through 2015: Greenhouse Gas Bulletin No. 12 (WMO, Genewa, Switzerland, 2016).

  43. 43.

    R. J. Cicerone, “How has the atmospheric concentration of CO changed?,” in In the Changing Atmosphere (John Willey & Sons, New York, 1988), p. 49–61

    Google Scholar 

  44. 44.

    R. Y. Delmas and M. Legrand, “Trends recorded in Greenland in relation with Northern hemisphere anthropogenic pollution,” IGACtiv. Newslett., No. 14, 19–22 (1998).

    Google Scholar 

  45. 45.

    S. S. Assonov, C. A. M. Brenninkmeijer, P. Jockel, R. Mulvaney, S. Bernard, and J. Chappellaz, “Evidence for CO Increase in the SH during the 20th century based on firn air samples from Berkner Island, Antarctica,” Atmos. Chem. Phys. 7 (2), 295–308 (2007).

    ADS  Article  Google Scholar 

  46. 46.

    “Atmosphere trace gases that are radiatively active and significance to global change,” Earth Quest. 4 (2), 10–11 (1990).

    Google Scholar 

  47. 47.

    N. L. Glinka, General Chemistry (Khimiya, Leningrad, 1985) [in Russian].

    Google Scholar 

  48. 48.

    G. V. Dobrovol’skii and E. D. Nikitin, Functions of Soils in the Biosphere and Ecosystems (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  49. 49.

    V. I. Sergienko, O. V. Dudarev, N. N. Dmitrevskii, N. E. Shakhova, N. N. Nikol’skii, S. L. Nikiforov, A. S. Salomatin, R. A. Salyuk, V. V. Karnaukh, D. B. Chernykh, V. E. Tumskoi, E. M. Chuvilin, and B. A. Bukhanov, “The degradation of submarine permafrost and the destruction of hydrates on the shelf of east arctic seas as a potential cause of the Methane Catastrophe: Some results of integrated studies in 2011,” Dokl. Eqath Sci. 446 (1), 1132–1137 (2012).

    ADS  Article  Google Scholar 

  50. 50.

    O. A. Anisimov, Yu. G. Zaboikina, V. A. Kokorev, and L. N. Yurganov, “Possible causes of methane release from the East Arctic seas shelf,” Led Sneg 54 (2), 69–81 (2014).

    Google Scholar 

  51. 51.

    N. Shakhova, I. Semiletov, A. Salyuk, V. Yusupov, D. Kosmach, and O. Gustafsson, “Extensive methane venting to the atmosphere from sediments of the East Siberian Arctic shelf,” Science 327, 1246–1250 (2010).

    ADS  Article  Google Scholar 

  52. 52.

    N. Shakhova, I. Semiletov, I. Leifer, V. Sergienko, A. Salyuk, D. Kosmach, D. Chernykh, C. Stubbs, D. Nicolsky, V. Tumskoy, and O. Gustafsson, “Ebullition and storm-induced methane release from the East Siberian Arctic shelf,” Nat. Geosci. 7, 64–70 (2014).

    ADS  Article  Google Scholar 

  53. 53.

    D. H. Enhalt, “The atmospheric cycle of methane,” Tellus 26 (1-2), 58–70 (1974).

    ADS  Google Scholar 

  54. 54.

    G. A. Zavarzin, “Microbe cycle of methane in cold conditions,” Priroda, No. 6, 3–14 (1995).

    Google Scholar 

  55. 55.

    B. D. Belan, Tropospheric Ozone (Publishing House of IAO SB RAS, Tomsk, 2010) [in Russian].

    Google Scholar 

  56. 56.

    V. I. Vorob’ev, Synoptic Meteorology (Gidrometeoizdat, Leningrad, 1991) [in Russian].

    Google Scholar 

  57. 57.

    Z. M. Makhover, Climatology of Tropopause (Gidrometeoizdat, Leningrad, 1983) [in Russian].

    Google Scholar 

  58. 58.

    J. Krzyscin, P. Krizan, and J. Jaroslawski, “Long-term changes in the tropospheric column ozone from the ozone soundings over Europe,” Atmos. Environ. 41 (3), 606–616 (2007).

    ADS  Article  Google Scholar 

  59. 59.

    M. B. Follette-Cook, R. D. Hudson, and G. E. Nedoluha, “Classification of Northern hemisphere stratospheric ozone and water vapor profiles by meteorological regime,” Atmos. Chem. Phys. 9 (16), 5989–6003 (2009).

    ADS  Article  Google Scholar 

  60. 60.

    M. Yu. Arshinov, B. D. Belan, G. A. Ivlev, O. A. Krasnov, T. M. Rasskazchikova, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Complex assessment of the conditions of the air basin over Norilsk industrial region. Part 3. Dispersal of admixtures,” Atmos. Ocean. Opt. 19 (9), 717–723 (2006).

    Google Scholar 

  61. 61.

    V. G. Arshinova, B. D. Belan, G. A. Ivlev, T. M. Rasskazchikova, D. V. Simonenkov, G. N. Tolmachev, and A. V. Fofonov, “Complex assessment of the conditions of the air basin over Norilsk industrial region. Part 4. Vertical stratification of contaminants,” Atmos. Ocean. Opt. 19 (10), 814–817 (2006).

    Google Scholar 

  62. 62.

    M. V. Panchenko and S. A. Terpugova, “Annual behavior of the content of submicron aerosol in the troposphere over West Siberia,” Atmos. Ocean. Opt. 7 (8), 552–557 (1994).

    Google Scholar 

  63. 63.

    M. V. Panchenko, V. V. Pol’kin, S. A. Terpugova, A. G. Tumakov, V. P. Shmargunov, and E. P. Yausheva, “The formation of average regional aerosol background,” Atmos. Ocean. Opt. 8 (7), 579–580 (1995).

    Google Scholar 

  64. 64.

    M. V. Panchenko and S. A. Terpugova, “Seasonal factors of the variability of the submicron aerosol characteristics. I. Air masses,” Atmos. Ocean. Opt. 8 (12), 977–980 (1995).

    Google Scholar 

  65. 65.

    S. M. Sakerin and D. M. Kabanov, “Fine and coarse components of atmospheric aerosol optical depth in maritime and polar regions,” Atmos. Oceanic Opt. 28 (6), 510–517 (2015).

    Article  Google Scholar 

  66. 66.

    S. M. Sakerin, D. M. Kabanov, V. V. Polkin, V. F. Radionov, B. N. Holben, and A. Smirnov, “Variations in aerosol optical and microphysical characteristics along the route of Russian Antarctic expeditions in the East Atlantic,” Atmos. Oceanic Opt. 30 (1), 89–102 (2017).

    Article  Google Scholar 

  67. 67.

    S. M. Sakerin, L. P. Golobokova, D. M. Kabanov, V. V. Polkin, Yu. S. Turchinovich, T. V. Khodzher, and O. I. Khuriganova, “Spatiotemporal variations in aerosol characteristics along the route of the Indian-Atlantic expedition onboard the research vessel Akademik Nikolaj Strakhov,” Atmos. Oceanic Opt. 30 (4), 349–359 (2017).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to B. D. Belan.

Additional information

Original Russian Text © O.Yu. Antokhina, P.N. Antokhin, V.G. Arshinova, M.Yu. Arshinov, B.D. Belan, S.B. Belan, D.K. Davydov, G.A. Ivlev, A.V. Kozlov, P. Nédélec, J.-D. Paris, T.M. Rasskazchikova, D.E. Savkin, D.V. Simonenkov, T.K. Sklyadneva, G.N. Tolmachev, A.V. Fofonov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Antokhina, O.Y., Antokhin, P.N., Arshinova, V.G. et al. Vertical Distributions of Gaseous and Aerosol Admixtures in Air over the Russian Arctic. Atmos Ocean Opt 31, 300–310 (2018). https://doi.org/10.1134/S102485601803003X

Download citation

Keywords

  • Arctic
  • atmosphere
  • aerosol
  • air
  • vertical distribution
  • gases
  • continental
  • large-scale
  • spatial