Skip to main content
Log in

Numerical Method of Cavity Adjustment by the Output Beam Image

  • Optical Instrumentation
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

Results of numerical and experimental studies of the control of optical elements of a KrF laser cavity by use of the image processing method are presented. Different methods of beam image binarization for determining the boundary dimensions and flattening the distribution of its radiation intensity are considered. Conditions allowing one to accelerate the process of dispersive cavity adjustment in the automatic regime of laser operation and to restore the initial parameters of the output beam with an accuracy of up to 5% are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. M. Razhev, E. S. Kargapoltsev, and D. S. Churkin, “High-power gas discharge excimer ArF, KrCl, KrF, and XeCl lasers on gas mixtures free of buffer gas,” Atmos. Ocean. Opt. 29 (6), 575–579 (2016).

    Article  Google Scholar 

  2. S. M. Bobrovnikov, A. B. Vorozhtsov, E. V. Gorlov, V. I. Zharkov, E. M. Maksimov, Y. N. Panchenko, and G. V. Sakovich, “Lidar detection of explosive vapors in the atmosphere,” Russ. Phys. J. 58 (9), 1217–1225 (2016).

    Article  Google Scholar 

  3. S. M. Bobrovnikov, E. V. Gorlov, and V. I. Zharkov, “Experimental estimation of Raman lidar sensitivity in the middle UV,” Atmos. Ocean. Opt. 26 (4), 320–325 (2013).

    Article  Google Scholar 

  4. V. V. Zuev, V. D. Burlakov, S. I. Dolgii, A. V. Nevzorov, and A. V. El’nikov, “Breakthrough of stratospheric air masses into the upper troposphere retrieved from ozone lidar measurements,” Atmos. Ocean. Opt. 21 (7), 514–519 (2008).

    Google Scholar 

  5. L. G. Shapiro and G. C. Stockman, Computer Vision (Prentice Hall, London, 2001).

    Google Scholar 

  6. R. C. Gonzales and R. E. Woods, Digital Image Processing (Addison Wesley, Boston, 2001).

    Google Scholar 

  7. Yu. N. Panchenko, M. V. Andreev, S. M. Bobrovnikov, E. V. Gorlov, V. V. Dudarev, N. G. Ivanov, V. F. Losev, A. V. Pavlinskii, A. V. Puchikin, and V. I. Zharkov, “Narrow-band tunable laser system for a lidar facility,” Rus. Phys. J. 55 (6), 609–615 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Andreev.

Additional information

Original Russian Text © M.V. Andreev, S.M. Bobrovnikov, E.V. Gorlov, Yu.N. Panchenko, A.V. Puchikin, V.I. Zharkov, 2018, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreev, M.V., Bobrovnikov, S.M., Gorlov, E.V. et al. Numerical Method of Cavity Adjustment by the Output Beam Image. Atmos Ocean Opt 31, 324–328 (2018). https://doi.org/10.1134/S1024856018030028

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856018030028

Keywords

Navigation