Skip to main content

Radiation Polarization Effect on the Retrieval of the Earth’s Surface Reflection Coefficient from Satellite Data in the Visible Wavelength Range


The problem of taking into account the polarization effect in atmospheric correction of satellite images of the Earth’s surface in the visible wavelength range is considered. Some software for the calculation of radiation components forming satellite images has been developed with and without allowance for polarization in the approximation of a homogeneous surface. Conditions under which neglecting polarization properties of the radiation can lead to significant errors in the retrieval of reflection coefficients of lowreflecting surfaces have been obtained.

This is a preview of subscription content, access via your institution.


  1. 1.

    V. A. Tolpin, E. A. Lupyan, S. A. Bartalev, D. E. Plotnikov, and A. M. Matveev, “Possibilities of agricultural vegetation condition analysis with the “VEGA” satellite service,” Opt. Atmos. Okeana 27 (7), 581–586 (2014).

    Google Scholar 

  2. 2.

    Yu. M. Polishchuk and O. S. Tokareva, “The use of satellite images for ecological estimate of flare firing of gas at oil fidds of Siberia,” Opt. Atmos. Okeana 27 (7), 647–651 (2014).

    Google Scholar 

  3. 3.

    M. Yu. Kataev and A. A. Bekerov, “Detection of ecological changes in the natural environment from satellite measurements,” Opt. Atmos. Okeana 27 (7), 652–656 (2014).

    Google Scholar 

  4. 4.

    P. N. Reinersman and K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34 (21), 4453–4471 (1995).

    ADS  Article  Google Scholar 

  5. 5.

    E. F. Vermote and A. Vermeulen, Atmospheric correction algorithm: Spectral reflectances (MOD09). Algorithm Theoretical Background document, version 4.0. (last access: 17.10.2017).

  6. 6.

    V. V. Belov and S. V. Afonin, From Physical Principles, Theory, and Simulation to Thematic Processing of Satellite Imagery (Publishing House of IAO SB RAS, Tomsk, 2005) [in Russian].

    Google Scholar 

  7. 7.

    S. V. Afonin, V. V. Belov, and D. V. Solomatov, “Solution of problems of the temperature monitoring of the Earth’s surface from space on the basis of the RTM method,” Atmos. Ocean. Opt. 21 (12), 921–927 (2008).

    Google Scholar 

  8. 8.

    Y. Mekler and Y. J. Kaufman, “Contrast reduction by the atmosphere and retrieval of nonuniform surface reflectance,” Appl. Opt. 21 (2), 310–316 (1982).

    ADS  Article  Google Scholar 

  9. 9.

    F. M. Breon and E. Vermote, “Correction of MODIS surface reflectance time series for BRDF effects,” Remote Sens. Environ. 125, 1–9 (2012).

    ADS  Article  Google Scholar 

  10. 10.

    A. Lyapustin, J. Martonchik, Y. Wang, I. Laszlo, and S. Korkin, “Multiangle Implementation of Atmospheric Correction (MAIAC): 3. Atmospheric correction,” Remote Sens. Environ. 127, 385–393 (2012).

    ADS  Article  Google Scholar 

  11. 11.

    V. E. Zuev, V. V. Belov, and V. V. Veretennikov, Theory of Systems in Optics of Disperse Media (Spektr, Tomsk, 1997) [in Russia].

    Google Scholar 

  12. 12.

    V. V. Belov and M. V. Tarasenkov, “Statistical modeling of the point spread function in the spherical atmosphere and a criterion for detecting image isoplanarity zones,” Atmos. Ocean. Opt. 23 (6), 441–447 (2010).

    Article  Google Scholar 

  13. 13.

    A.V. Kozhevnikova, M. V. Tarasenkov, and V. V. Belov, “Parallel computations for solving problems of the reconstruction of the reflection coefficient of the Earth’s surface by satellite data,” Atmos. Ocean. Opt. 26 (4), 326–328 (2013).

    Article  Google Scholar 

  14. 14.

    S. M. Prigarin, K. B. Bazarov, and U. G. Oppel, “The effect of multiple scattering on polarization and angular distributions for radiation reflected by clouds: Results of Monte Carlo simulation,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 92920 (2014).

    ADS  Google Scholar 

  15. 15.

    G. A. Mikhailov and M. A. Nazaraliev, “Monte Carlo calculations of light polarization in a spherical atmosphere,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 7 (4), 385–395 (1971).

    Google Scholar 

  16. 16.

    S. A. Ukhinov and D. I. Yurkov, “Monte Carlo estimates for parametric derivatives of polarized radiation,” Sib. Zh. Vychisl. Matem. 5 (1), 39–56 (2002).

    MATH  Google Scholar 

  17. 17.

    M. A. Nazaraliev and T. A. Sushkevich, “Calculation of multiply scattered radiation field parameters in a spherical atmosphere,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 11 (7), 705–717 (1975).

    ADS  Google Scholar 

  18. 18.

    G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7 (8), 1519–1527 (1968).

    ADS  Article  Google Scholar 

  19. 19.

    G. V. Rozenberg, “Light scattering in the Earth’s atmosphere,” Phys.-Uspekhi 3, 346–371 (1960).

    ADS  Article  Google Scholar 

  20. 20.

    G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].

    Google Scholar 

  21. 21.

    A. V. Zimovaia, M. V. Tarasenkov, and V. V. Belov, “Estimate of the effect of polarization account on the reflection coefficient of the Earth’s surface for atmospheric correction of satellite data,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 1–10 (2016).

    Google Scholar 

  22. 22.

    F. X. Kneizys, E. P. Shettle, G. P. Anderson, L.W.Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, and W. O. Gallery, User Guide to LOWTRAN-7 (Hanscom AFB, 1988).

    Google Scholar 

  23. 23.

    V. V. Belov, B. D. Borisov, and I. Yu. Makushkina, “Some peculiarities of adjacency effects formation in the vision systems,” Opt. Atmos. Okeana 1 (2), S. 18–24. 1988

    Google Scholar 

  24. 24.

    S. Chandrasekhar, Radiative Transfer (Dover, 1960).

    MATH  Google Scholar 

  25. 25.

    H. Van de Hulst, Light Scattering by Small Particles (Willey, 1957).

    Google Scholar 

  26. 26.

    K. Coulson, J. Dave, and Z. Sekera, Tables related to radiation emerging from a planetary atmosphere with Rayleigh scattering (University of California Press, 1960).

    Google Scholar 

  27. 27.

    D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, 1969).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to A. V. Zimovaya.

Additional information

Original Russian Text © A.V. Zimovaya, M.V. Tarasenkov, V.V. Belov, 2017, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zimovaya, A.V., Tarasenkov, M.V. & Belov, V.V. Radiation Polarization Effect on the Retrieval of the Earth’s Surface Reflection Coefficient from Satellite Data in the Visible Wavelength Range. Atmos Ocean Opt 31, 131–136 (2018).

Download citation


  • optical radiation transfer in the atmosphere
  • atmospheric correction of satellite images
  • light polarization
  • Monte Carlo method