Advertisement

Atmospheric and Oceanic Optics

, Volume 31, Issue 2, pp 131–136 | Cite as

Radiation Polarization Effect on the Retrieval of the Earth’s Surface Reflection Coefficient from Satellite Data in the Visible Wavelength Range

  • A. V. Zimovaya
  • M. V. Tarasenkov
  • V. V. Belov
Optical Waves Propagation
  • 11 Downloads

Abstract

The problem of taking into account the polarization effect in atmospheric correction of satellite images of the Earth’s surface in the visible wavelength range is considered. Some software for the calculation of radiation components forming satellite images has been developed with and without allowance for polarization in the approximation of a homogeneous surface. Conditions under which neglecting polarization properties of the radiation can lead to significant errors in the retrieval of reflection coefficients of lowreflecting surfaces have been obtained.

Keywords

optical radiation transfer in the atmosphere atmospheric correction of satellite images light polarization Monte Carlo method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. A. Tolpin, E. A. Lupyan, S. A. Bartalev, D. E. Plotnikov, and A. M. Matveev, “Possibilities of agricultural vegetation condition analysis with the “VEGA” satellite service,” Opt. Atmos. Okeana 27 (7), 581–586 (2014).Google Scholar
  2. 2.
    Yu. M. Polishchuk and O. S. Tokareva, “The use of satellite images for ecological estimate of flare firing of gas at oil fidds of Siberia,” Opt. Atmos. Okeana 27 (7), 647–651 (2014).Google Scholar
  3. 3.
    M. Yu. Kataev and A. A. Bekerov, “Detection of ecological changes in the natural environment from satellite measurements,” Opt. Atmos. Okeana 27 (7), 652–656 (2014).Google Scholar
  4. 4.
    P. N. Reinersman and K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34 (21), 4453–4471 (1995).ADSCrossRefGoogle Scholar
  5. 5.
    E. F. Vermote and A. Vermeulen, Atmospheric correction algorithm: Spectral reflectances (MOD09). Algorithm Theoretical Background document, version 4.0. http://modis.gsfc.nasa.gov/data/atbd_mod08.pdf (last access: 17.10.2017).Google Scholar
  6. 6.
    V. V. Belov and S. V. Afonin, From Physical Principles, Theory, and Simulation to Thematic Processing of Satellite Imagery (Publishing House of IAO SB RAS, Tomsk, 2005) [in Russian].Google Scholar
  7. 7.
    S. V. Afonin, V. V. Belov, and D. V. Solomatov, “Solution of problems of the temperature monitoring of the Earth’s surface from space on the basis of the RTM method,” Atmos. Ocean. Opt. 21 (12), 921–927 (2008).Google Scholar
  8. 8.
    Y. Mekler and Y. J. Kaufman, “Contrast reduction by the atmosphere and retrieval of nonuniform surface reflectance,” Appl. Opt. 21 (2), 310–316 (1982).ADSCrossRefGoogle Scholar
  9. 9.
    F. M. Breon and E. Vermote, “Correction of MODIS surface reflectance time series for BRDF effects,” Remote Sens. Environ. 125, 1–9 (2012).ADSCrossRefGoogle Scholar
  10. 10.
    A. Lyapustin, J. Martonchik, Y. Wang, I. Laszlo, and S. Korkin, “Multiangle Implementation of Atmospheric Correction (MAIAC): 3. Atmospheric correction,” Remote Sens. Environ. 127, 385–393 (2012).ADSCrossRefGoogle Scholar
  11. 11.
    V. E. Zuev, V. V. Belov, and V. V. Veretennikov, Theory of Systems in Optics of Disperse Media (Spektr, Tomsk, 1997) [in Russia].Google Scholar
  12. 12.
    V. V. Belov and M. V. Tarasenkov, “Statistical modeling of the point spread function in the spherical atmosphere and a criterion for detecting image isoplanarity zones,” Atmos. Ocean. Opt. 23 (6), 441–447 (2010).CrossRefGoogle Scholar
  13. 13.
    A.V. Kozhevnikova, M. V. Tarasenkov, and V. V. Belov, “Parallel computations for solving problems of the reconstruction of the reflection coefficient of the Earth’s surface by satellite data,” Atmos. Ocean. Opt. 26 (4), 326–328 (2013).CrossRefGoogle Scholar
  14. 14.
    S. M. Prigarin, K. B. Bazarov, and U. G. Oppel, “The effect of multiple scattering on polarization and angular distributions for radiation reflected by clouds: Results of Monte Carlo simulation,” Proc. SPIE—Int. Soc. Opt. Eng. 9292, 92920 (2014).ADSGoogle Scholar
  15. 15.
    G. A. Mikhailov and M. A. Nazaraliev, “Monte Carlo calculations of light polarization in a spherical atmosphere,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 7 (4), 385–395 (1971).Google Scholar
  16. 16.
    S. A. Ukhinov and D. I. Yurkov, “Monte Carlo estimates for parametric derivatives of polarized radiation,” Sib. Zh. Vychisl. Matem. 5 (1), 39–56 (2002).zbMATHGoogle Scholar
  17. 17.
    M. A. Nazaraliev and T. A. Sushkevich, “Calculation of multiply scattered radiation field parameters in a spherical atmosphere,” Izv. Akad. Nauk SSSR. Fiz. Atmos. Okeana 11 (7), 705–717 (1975).ADSGoogle Scholar
  18. 18.
    G. W. Kattawar and G. N. Plass, “Radiance and polarization of multiple scattered light from haze and clouds,” Appl. Opt. 7 (8), 1519–1527 (1968).ADSCrossRefGoogle Scholar
  19. 19.
    G. V. Rozenberg, “Light scattering in the Earth’s atmosphere,” Phys.-Uspekhi 3, 346–371 (1960).ADSCrossRefGoogle Scholar
  20. 20.
    G. I. Marchuk, G. A. Mikhailov, M. A. Nazaraliev, R. A. Darbinyan, B. A. Kargin, and B. S. Elepov, Monte Carlo Method in Atmospheric Optics (Nauka, Novosibirsk, 1976) [in Russian].Google Scholar
  21. 21.
    A. V. Zimovaia, M. V. Tarasenkov, and V. V. Belov, “Estimate of the effect of polarization account on the reflection coefficient of the Earth’s surface for atmospheric correction of satellite data,” Proc. SPIE—Int. Soc. Opt. Eng. 10035, 1–10 (2016).Google Scholar
  22. 22.
    F. X. Kneizys, E. P. Shettle, G. P. Anderson, L.W.Abreu, J. H. Chetwynd, J. E. A. Selby, S. A. Clough, and W. O. Gallery, User Guide to LOWTRAN-7 (Hanscom AFB, 1988).Google Scholar
  23. 23.
    V. V. Belov, B. D. Borisov, and I. Yu. Makushkina, “Some peculiarities of adjacency effects formation in the vision systems,” Opt. Atmos. Okeana 1 (2), S. 18–24. 1988Google Scholar
  24. 24.
    S. Chandrasekhar, Radiative Transfer (Dover, 1960).zbMATHGoogle Scholar
  25. 25.
    H. Van de Hulst, Light Scattering by Small Particles (Willey, 1957).Google Scholar
  26. 26.
    K. Coulson, J. Dave, and Z. Sekera, Tables related to radiation emerging from a planetary atmosphere with Rayleigh scattering (University of California Press, 1960).Google Scholar
  27. 27.
    D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (American Elsevier, 1969).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Zimovaya
    • 1
  • M. V. Tarasenkov
    • 1
    • 2
  • V. V. Belov
    • 1
    • 2
  1. 1.V.E. Zuev Institute of Atmospheric Optics, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Tomsk State UniversityTomskRussia

Personalised recommendations